Skip to main content

Spallanzani's Mouse: A Model of Restoration and Regeneration

  • Chapter
Regeneration: Stem Cells and Beyond

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 280))

Abstract

The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show—through extensive breeding and backcrossing—that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243

    Article  PubMed  CAS  Google Scholar 

  • Anversa P, Nadal-Ginard B. (2002a) Cardiac chimerism: methods matter. Circulation. 106:129–31

    Article  Google Scholar 

  • Adachi M, Watanabe-Fukunaga R, Nagata S. (1993) Aberrant transcription caused by the insertion of an endogenous retrovirus in an apoptosis gene. Proc. Natl. Acad. Sci. USA 90:1756–1760

    Article  CAS  Google Scholar 

  • Battegay EJ. (1995). Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J Mol Med. 73:333–46

    Article  PubMed  CAS  Google Scholar 

  • Bauer SR, Ruiz-Hidalgo MJ, Rudikoff EK, Goldstein J, Laborda J. (1998) Modulated expression of the epidermal growth factor-like homeotic protein dlk influences stromal-cell-pre-B-cell interactions, stromal cell adipogenesis, and pre-B-cell interleukin-7 requirements. Mol Cell Biol 1998; 18:5247–55

    CAS  Google Scholar 

  • Beltrami, A.P., Urbanek, K., Kajstura, J., Yan,S-M, Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A, Beltrami, C.A., and Anversa, P. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. New Engl J. Med. 344:1750–1757

    Article  PubMed  CAS  Google Scholar 

  • Blankenhorn, E.P., Troutman, S., Desquennes-Clark, L., Zhang, X-M., and Heber-Katz, E. (2003) Sexually dimorphic genes regulate healing and regeneration in the MRL/MpJ mouse. Mammalian Genome. 14:250–260

    Article  PubMed  Google Scholar 

  • Borgens, R.B. (1982) Mice regrow the tips of the foretoes. Science 217:747–50

    Article  PubMed  CAS  Google Scholar 

  • Borisov, A.B. (1998) Cellular mechanisms of myocardial regeneration in Cellular and Molecular Basis of Regeneration from Invertebrates to Humans, eds. Ferretti, P and Geraudie, J. (John Wiley and Sons Ltd., Chichester,). pp. 335–354

    Google Scholar 

  • Borisov, A. (1999) Regeneration of skeletal and cardiac muscle in mammals: do nonprimate models resemble human pathology? Wound Rep. Regen. 7: 26–35

    Article  CAS  Google Scholar 

  • Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636 40

    Article  PubMed  Google Scholar 

  • Brockes J.P. (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276:81–87

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP, Kumar A. (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 3:566–74

    Article  PubMed  CAS  Google Scholar 

  • Cadinouche MZ, Liversage RA, Muller W, Tsilfidis C.(1999) Molecular cloning of the Notophthalmus viridescens radical fringe cDNA and characterization of its expression during forelimb development and adult forelimb regeneration. Dev Dyn. 214:259–68

    Article  PubMed  CAS  Google Scholar 

  • Carbone, A, Minieri, M, Sampaolesi, M, Fiaccavento, R., De Feo, A., Cesaroni, P, Peruzzi, G., Di Nardo, P. (1995). Hamster Cardiomyocytes: a model of myocardial regeneration? Annals of the New York Academy of Sciences. 752:75–71

    Article  Google Scholar 

  • Chernoff EAG, O'Hara CM, Bauerle B, Bowling M. (2000) Matrix metalloproteinase production in regenerating axolotl spinal cord. Wound Repair Regen 8:282–291

    Article  PubMed  CAS  Google Scholar 

  • Chernoff E, Sato K, Corn A, Karcavich R. (2002) Spinal cord regeneration: intrinsic properties and emerging mechanisms. Semin Cell Dev Biol. 13:361

    Article  PubMed  CAS  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA. (2002) Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn. 223:193–203

    Article  PubMed  CAS  Google Scholar 

  • Clark, L., Clark, R., and Heber-Katz, E. (1998) A new model for mammalian wound repair and regeneration. Clin. Immun. Immunopath. 88:35–45

    Article  PubMed  CAS  Google Scholar 

  • Clark, R.A.F. (1996) Wound repair: overview and general consideration. In: The Molecular and Cellular Biology of Wound Repair. (R Clark, ed.). Plenum Press, NY. pp. 3–35

    Google Scholar 

  • Cohen, P.L. and Eisenberg, R.A. (1991). Lpr and gld: Single Gene models of Systemic Autoimmunity and Lymphoproliferartive disease. Annu. Rev. Immunol. 9, 243–69

    Article  PubMed  CAS  Google Scholar 

  • Condic ML, Lemons ML (2002) Extracellular matrix in spinal cord regeneration: getting beyond attraction and inhibition. Neuroreport 13:A37–48

    Article  PubMed  CAS  Google Scholar 

  • Condorelli G, Borello U, De Angelis L, Latronico M, Sirabella D, Coletta M, Galli R, Balconi G, Follenzi A, Frati G, Cusella De Angelis MG, Gioglio L, Amuchastegui S, Adorini L, Naldini L, Vescovi A, Dejana E, Cossu G (2001) Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98:10733–8

    Article  PubMed  CAS  Google Scholar 

  • Davies SJ, Goucher DR, Doller C, Silver J (1999) Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 19:5810–5822

    PubMed  CAS  Google Scholar 

  • Dickie MM. Keeping Records, p25. In Biology of the Laboratory Mouse. Green EL (ed), Dover Publications. New York, 1975

    Google Scholar 

  • Dinsmore, CE. (ed) (1991) A History of Regeneration Research: Milestones in the Evolution of a Science. Cambridge University Press. New York

    Google Scholar 

  • Dixon, IMC, Haisong, J, Reid, NL, Scammell-La Fleur, T, Werner, JP, and Jasmin, G. (1997) Cardiac collagen remodeling in the cardiomyopathic Syrian hamster and the effect of losartan. J. Mol Cell Cardiol. 29: 1837–1850

    Article  PubMed  CAS  Google Scholar 

  • Douglas BS (1972) Conservative management of guillotine amputations of the fingers of children. Austral Paediatr J 8:86–90

    CAS  Google Scholar 

  • Dresden MH, Gross J. (1970) The collagenolytic enzyme of the regenerating limb of the Newt Triturus viridescens. Dev Biol. 22:129–37

    Article  PubMed  CAS  Google Scholar 

  • Echeverri K, Clarke JDW, and Tanaka E. (2001) In vivo Imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Developmental Biology 236:151–164

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235, 442–447

    Article  PubMed  CAS  Google Scholar 

  • Garces C, Ruiz-Hidalgo MJ, Bonvini E, Goldstein J, Laborda J. (1999) Adipocyte differentiation is modulated by secreted delta-like (dlk) variants and requires the expression of membrane-associated dlk. Differentiation 64:103–14

    PubMed  CAS  Google Scholar 

  • Gardiner, D.M. and Bryant, S.V. (1996) Molecular mechanisms in the control of limb regeneration: the role of homeobox genes. Int. J. Dev. Biol. 40:797–805

    PubMed  CAS  Google Scholar 

  • Globus M, Vethamany-Globus S, Lee YCI. (1980) Effect of apical epidermal cap on mitotic cycle and cartilage differentiation in regeneration blastemata in the newt. Notophthalmus viridescens. Develop Biol 75:358–372

    Article  PubMed  CAS  Google Scholar 

  • Gourevitch, D, Clark, L, Chen P, Seitz A, Samulewicz S, and E. Heber-Katz. (2003) Matrix Metalloproteinase Activity Correlates with Blastema Formation in the Regenerating MRL Mouse Ear Hole Model. Dev Dyn. 226:377–287

    Article  PubMed  CAS  Google Scholar 

  • Grillo HC, Lapiere CM, Dresden MH, Gross J. (1968) Collagenolytic activity in regenerating forelimbs of the adult newt. Dev Biol 17:571–583

    Article  PubMed  CAS  Google Scholar 

  • Gross, J. (1996) Getting to mammalian wound repair and amphibian limb regeneraion: a mechanistic link in the early events. Wound Repair Reg. 4:190–202

    Article  CAS  Google Scholar 

  • Grounds MD, White JD, Rosenthal N, Bogoyevitch MA (2002) The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem. 50:589–610

    Article  PubMed  CAS  Google Scholar 

  • Goss, R.J. (1970) Problems of antlerogenesis. Clin. Orthopaedics 69:227–238

    CAS  Google Scholar 

  • Goss, R.J. and Grimes, L.N. (1975) Epidermal downgrowths in regenerating rabbit ear holes. J. Morphol. 146:533–542

    Article  PubMed  CAS  Google Scholar 

  • Gourevich, D, Clark, L, Chen P, Seitz A, Samulewicz S, and E. Heber-Katz. (2003) Matrix Metalloproteinase Activity Correlates with Blastema Formation in the Regenerating MRL Ear Hole Model. Developmental Dynamics. 226: 377–387

    Article  CAS  Google Scholar 

  • Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P. (1999) Inhibition of plasminogen activators or matrix metallopro-teinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Medicine 5:1135–1142

    Article  PubMed  CAS  Google Scholar 

  • Heber-Katz, E. (1999) The regenerating mouse ear. Sem. Cell Dev. Biol. 10:415–420

    Article  CAS  Google Scholar 

  • Heber-Katz, E., Chen, P., Clark, L, Zhang, X-M., Troutman, S., and Blankenhorn, EP. (2002) Novel genetic loci associated with wound healing and regeneration that distinguish MRL and M. m. castaneus mice. Submitted

    Google Scholar 

  • Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9:853–58

    Article  PubMed  CAS  Google Scholar 

  • Isner, JM. (2002) Myocardial gene therapy. Nature 415:234–239

    Article  PubMed  CAS  Google Scholar 

  • Jackson KA, Majika SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell M (2001) Regeneration of ischemie cardiac muscle and vascular endothelium by adult stem cells. J Clin Inv 107:1395–1402

    Article  CAS  Google Scholar 

  • Kalkman EA, Bilgin YM, van Haren P, van Suylen RJ, Saxena PR, Schoemaker RG. (1996) Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc.Res. 32, 1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Hirota K, Matsumoto G, Hanyu Y. (2001) Expression pattern of a newt Notch homologue in regenerating newt retina. Brain Res Dev Brain Res. 128:53–62

    Article  PubMed  CAS  Google Scholar 

  • Kench, J.A., Russell, D.M., Fadok, V.A., Young, S.K., Worthen, G.S., Jones-Carsen, J., Henson, J.E., Henson, P.M., and Nemazee, D. (1999) Aberrant wound healing and TGF-beta production in the autoimmune-prone MRL/+ mouse. Clin. Immunol. 92:300–310

    Article  PubMed  CAS  Google Scholar 

  • Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. (2001) Neovascularization of ischemie myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling, and improves cardiac function. Nature Medicine 7:430–436

    Article  PubMed  CAS  Google Scholar 

  • Laflamme MA, Myerson D, Saffitz JE, Murry CE. (2002) Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 90:634–40

    Article  PubMed  CAS  Google Scholar 

  • Lee, JK, Zaidi, SHE, Liu, P., Dawood, F, Cheah, AYL, Wen, W-H, Saiki, Y, and Rabinovitch, M. (1998) A serine esterase inhibitor reduces inflammation and fibrosis and preserves cardiac function after experimentally-induced murine myocarditis. Nature Medicine 4: 1383–1391

    Article  PubMed  CAS  Google Scholar 

  • Leferovich, J., Bedelbaeva, K., Samulewicz, S, Xhang, X-M, Zwas, DR, Lankford, EB, and Heber-Katz, E. (2001) Heart regeneration in adult MRL mice. Proc. Natl. Acad. Sci. USA, 98:9830–9835

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Gu, W, Masinde, G., Hamilton-Ulland, M., Xu, S., Mohan, S., and Baylink, D.J. (2001) Genetic control of the rate of wound healing in mice. Heredity. 86:668–674

    Article  PubMed  CAS  Google Scholar 

  • Li, YY, Feng, YQ, Kadokami, T, McTiernan, CF, Draviam, R, Watkins, SC, and Feldman AM. (2000) Mycardial extracellular matrix remodeling in transgenic mice overex-pressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. PNAS 97:12746–12751

    Article  PubMed  CAS  Google Scholar 

  • Lo D, Allen F, Brockes JP. (1993) Reversal of muscle differentiation during urodele limb regeneration. PNAS 90:7230–7234

    Article  PubMed  CAS  Google Scholar 

  • Mauro, A. 1961. Satellite cell of skeletal muscle fibres. J Biophys Biochem Cytol 9:493 498

    Article  Google Scholar 

  • Masinde, G.L., Li, X., Gu, W., Davidson, H., Mohan, S., and Baylink, DJ. (2001) Identification of wound healing/regeneration quantitative trait loci (QTL) at multiple time points that explain seventy percent of variance in (MRL/MpJ and SJL/J) mice F2 population. Genome Res. 11:2027–2033

    Article  PubMed  CAS  Google Scholar 

  • McBrearty, B.A., Desquenne-Clark, L., Zhang, X-M., Blankenhorn, E.P., and HeberKatz, E. (1998) Genetic analysis of a mammalian wound healing trait. Proc. Natl. Acad. Sci. USA, 95:11792–11797

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, K, Uchiyawa K, Imokawa Y, Yoshizato K. (1996) Cloning and characterization of cDNAs for matrix metalloproteinases of regenerating newt limbs. Proc Natl Acad Sci USA 93:6819–6824

    Article  PubMed  CAS  Google Scholar 

  • Morris RJ, and Potten CS. (1994) Slowly cycling label-retaining epidermal cells behave like clonogenic stem cells in vitro Cell Prolif. 27:279–289

    CAS  Google Scholar 

  • Moss and Leblond (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 170:421–35

    Article  PubMed  CAS  Google Scholar 

  • Murphy, E.D. and Roths, J.B. (1979) Autoimmunity and lymphoproliferation: Induction by mutant gene lpr and acceleration by a male-associated factor in strain BXSB. In Genetic Control of Autoimmune Disease. (eds. Rose, N.R., Bigazzi, P.E., and Warner, N.L.) 207–220 (Elsevier, New York)

    Google Scholar 

  • Nadal-Ginard, B. (1978) Comittment, fusion, and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 15:855–864

    Article  PubMed  CAS  Google Scholar 

  • Nelissen-Vrancken HJ, Debets JJ, Snoeckx LH, Daemen MJ, Smits JF. (1996) Time-related normalization of maximal coronary flow in isolated perfused hearts of rats with myocardial infarction. Circulation. 1996 93:349–55

    Article  PubMed  CAS  Google Scholar 

  • Neufield DA (1989) Epidermis, basement membrane, and connective-tissue healing after amputation of mouse digits: implications for mammalian appendage regeneration. Anat Rec 223:425–32

    Article  Google Scholar 

  • Newmark PA, Sanchez Alvarado A. (2002) Not your father's planarian: a classic model enters the era of functional genomics. Nat Rev Genet. 3:210–9

    Article  PubMed  CAS  Google Scholar 

  • Oberpriller JO, Ferrans, VJ, McDonnell, TJ, and Oberpriller JC. (1985) Activation of DNA synthesis and mitotic events in atrial myocytes following atrial and ventricular injury, in Pathobiology of Cardiovascular Injury. Ed. Stone and Weglicki, (Martinus Nijhoff Publishing, Boston) pp. 410–421

    Chapter  Google Scholar 

  • Odelberg SJ, Kollhoff A, and Keating MT. (2000) Dedifferentiation of Mammalian Myotubes Induced by msxl. Cell 103:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Orlic, D, et al. (2001a) Bone marrow cells regenerate infarcted myocardium. Nature. 410:701–5

    Article  PubMed  CAS  Google Scholar 

  • Orlic D et al. (2001b) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. PNAS. 98:10344–10349

    Article  PubMed  CAS  Google Scholar 

  • Polezhaev, L.V. (1972) Loss and Restoration of Regenerative Capacity in Tissues and Organs of Animals ed. Polezhaev LV (Harvard University Press, Cambridge).pp. 153–199

    Google Scholar 

  • Popova, NV, Tryson K, Wu K, and Morris RJ. (2002) Evidence that keratinocyte colony number is genetically controlled. Exp Dermatol. 11:503–508

    Article  PubMed  Google Scholar 

  • Popova NV, Teti KA, Wu KQ, Morris RJ. Identification of two keratinocyte stem cell regulatory loci implicated in skin carcinogenesis. Carcinogenesis (2003) 24(3):417–25

    Google Scholar 

  • Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A, Anversa P. (2002) Chimerism of the transplanted heart. N Engl J Med. 346:5–15

    Article  PubMed  Google Scholar 

  • Quinones JL, Rosa R, Ruiz DL, Garcia-Arraras JE. (2002) Extracellular matrix remodeling and metalloproteinase involvement during intestine regeneration in the sea cucumber Holothuria glaberrima. Dev Biol. 250:181–97

    Article  PubMed  CAS  Google Scholar 

  • Reginelli AD, Wang YQ, Sassoon D, Muneoka K.1995. Digit tip regeneration correlates with regions of Msxl (Hox 7) expression in fetal and newborn mice regrowth. Development 121:1065–76

    Google Scholar 

  • Repesh LA, Oberpriller JC. (1980) Ultrastructural studies on migrating epidermal cells during the wound healing stage of regeneration in the adult newt, Notophthalmus viridescens. Am J Anat. 159:187–208

    Article  PubMed  CAS  Google Scholar 

  • Rumyantev, PP. (1973) Post-injury DNA synthesis, mitosis, and ultrastructural reorganization of adult frog cardiac myocytes. Z. Zellforsch. 139: 431–450

    Article  Google Scholar 

  • Samulewicz, SJ, Clark,L, Seitz,A., and E. Heber-Katz. (2002) Expression of Pref-1, A Delta-Like Protein, in Healing Mouse Ears. Wound Repair and Regeneration, 10:215–221

    Article  PubMed  Google Scholar 

  • Sasayama, S. and Fujita, M. (1992) Recent insights into coronary collateral circulation. Circulation, 85:1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Sawada T, Oofusa K, Yoshizato K. (1999) Characterization of a collagenolytic enzyme released from wounded planarians dugesia japonica. Wound Rep Regen 7:458–466

    Article  CAS  Google Scholar 

  • Scheuer J, Buttrick P. (1987) The cardiac hypertrophie responses to pathologic and physiologic loads. Circulation. 75:163–8

    Article  Google Scholar 

  • Seitz, A., Aglow, E., and Heber-Katz, E. (2002) Recovery from spinal cord injury: A new transection model in the C57B1/6 mouse. J. Neuroscience Research. 67:337–345

    Article  CAS  Google Scholar 

  • SeitZ, A, Kragol, M, Aglow, E, Showe, L. and E, Heber-Katz. (2003) Apo-E expression after spinal cord injury in the mouse. J. Neuroscience Research. 71:417–426

    Article  CAS  Google Scholar 

  • Smas CM, Sul HS. (1993) Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73:725–34

    Article  PubMed  CAS  Google Scholar 

  • Stichel CC, Niermann H, D'Urso D, Lausberg F, Hermanns S, Muller HW (1999) Basai membrane-depleted scar in lesioned CNS: characteristics and relationships with regenerating axons. Neurosci 93:321–33

    Article  CAS  Google Scholar 

  • Song, W. Jackson, K., and McGuire, P.G. (2000) Degradation of Type IV Collagen by Matrix Metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Develop Biol. 227:606–617

    Article  PubMed  CAS  Google Scholar 

  • Stocum, D.L. (1984) The urodele limb regeneration blastema. Determination and organization of the morphogenetic field. Differentiation 27:13–28

    Article  PubMed  CAS  Google Scholar 

  • Stocum, D.L. (1996) Tissue restoration: approaches and prospects. Wound Repair Reg. 4:3–15

    Article  CAS  Google Scholar 

  • Stocum DL and Crawford, K (1987) Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol. 65:750–61

    Article  PubMed  CAS  Google Scholar 

  • Stocum DL and Dearlove GE. (1972) Epidermal-mesodermal interaction during morphogenesis of the limb regeneration blastema in larval salamanders. J. Exp. Zool. 181:49–62

    Article  Google Scholar 

  • Sun, Y, and Weber, KT. (2000) Infarct scar: a dynamic tissue. Cardiovacular Research. 46:250–6

    Article  CAS  Google Scholar 

  • Tabin, C.J. (1991) Retinoids, homeoboxes, and growth factors: towards molecular models for limb development. Cell 66:199–217

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.A., Atkins, B.Z., Hungspreugs, P., Jones, T.R., Reedy, M.C., Hutcheson, K. A., Glower, D.D. and Kraus, W.E. (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nature Medicine, 4:929–933

    Article  PubMed  CAS  Google Scholar 

  • Taylor DA, Hruban R, Rodriguez ER, Goldschmidt-Clermont PJ (2002) Cardiac chimerism as a mechanism for self-repair: does it happen and if so to what degree? Circulation. 106:2–4

    Article  PubMed  Google Scholar 

  • Technau U, Cramer von Laue C, Rentzsch F, Luft S, Hobmayer B, Bode HR, Holstein TW (2000) Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci 97:12127–31

    Article  PubMed  CAS  Google Scholar 

  • Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–5

    Article  PubMed  CAS  Google Scholar 

  • Theofilopoulos, A.N. Immunologic genes in mouse lupus models (1993) in:The Molecular Pathology of Autoimmune Diseases. (eds. Bona, C, Siminovitch, K.A., Zanetti, M. and Theofilopoulos, A.N.) 281–316 (Harwood Academic Publishers, Langhorne)

    Google Scholar 

  • Toma, C, Pittenger, MF, Cahill KS, Byrne BJ, Kessler P (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 105:93–98

    Article  PubMed  Google Scholar 

  • Vracko, R. and Thorning, D (1985) Freeze-thaw injury of rat heart across an intact diaphragm: a new model for the study of the response of myocardium to injury. Cardiovasc Res., 19:76–84

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Fukunaga, R., Brannan, C, Copeland, N.G., Jenkins, N.A., and Nagata, S (1992) Lymphoproliferation disorder in mice is explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–316

    Article  PubMed  CAS  Google Scholar 

  • Watson ML, Rao JK, Gilkeson GS, Ruiz P, Eicher EM, Pisetsky DS, Matsuzawa A, Rochelle JM, Seidin MF (1992) Genetic analysis of MRL-lpr mice: relationship of the Fas apoptosis gene to disease manifestations and renal disease modifying loci. J. Exp. Med. 176, 1645–1656

    Article  PubMed  CAS  Google Scholar 

  • Warejcka DJ. Harvey R, Taylor BJ. Young HE, Lucas PA (1996) A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. J Surg Res 62:233–242

    Article  PubMed  CAS  Google Scholar 

  • Yang EV, Bryant SV (1994) Developmental regulation of a matrix metalloproteinase during regeneration of axolotl appendages. Dev Biol 166:696–703

    Article  PubMed  CAS  Google Scholar 

  • Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heber-Katz, E., Leferovich, J.M., Bedelbaeva, K., Gourevitch, D. (2004). Spallanzani's Mouse: A Model of Restoration and Regeneration. In: Heber-Katz, E. (eds) Regeneration: Stem Cells and Beyond. Current Topics in Microbiology and Immunology, vol 280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18846-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18846-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62321-9

  • Online ISBN: 978-3-642-18846-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics