Skip to main content

Analysis and Computation of Dendritic Growth in Binary Alloys Using a Phase-Field Model

  • Conference paper
Numerical Mathematics and Advanced Applications

Summary

A solutal, anisotropic phase-field model for dendritic growth of an isothermal binary alloy is considered. Existence of a weak solution is established provided the physical anisotropy is small enough. A semi-implicit finite element method is proposed to solve the problem. A priori and a posteriori error estimates are derived when the physical anisotropy is small. An adaptive algorithm which aims at producing meshes with large aspect ratio is proposed. Numerical results show that accurate solutions can be obtained, even when the physical anisotropy is large.

supported by the Swiss National Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Engrg., 142(1–2):1–88, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Ainsworth and J.T. Oden. A unified approach to a posteriori error estimation using finite element residual methods. Numer. Math., 65:23–50, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Ainsworth, J. Z. Zhu, A. W. Craig, and O. C. Zienkiewicz. Analysis of the Zienkiewicz-Zhu a posteriori error estimator in the finite element method. Internat. J. Numer. Methods Engrg., 28(9):2161–2174, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Borouchaki and P. Lang. The bl2d mesh generator: Beginner’s guide, user’s and programmer’s manual. Technical Report RT-0194, Institut National de Recherche en Informatique et Automatique (INRIA), Rocquencourt, 78153 Le Chesnay, France, 1996.

    Google Scholar 

  5. E. Burman, D. Kessler, and J. Rappaz. Convergence of the finite element method for an anisotropic phase-field model. Technical report, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland, 2002.

    Google Scholar 

  6. E. Burman and M. Picasso. Anisotropic, adaptive finite elements for the computation of a solutal dendrite. Interfaces Free Bound., 5(2):103–127, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Burman, M. Picasso, and A. Jacot. Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model. J. Comput. Phys., accepted, 2003.

    Google Scholar 

  8. E. Burman and J. Rappaz. Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci., 26(13):1137–1160, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. M. Elliott. Approximation of curvature dependent interface motion. In The state of the art in numerical analysis (York, 1996), pages 407–440. Oxford Univ. Press, New York, 1997.

    Google Scholar 

  10. L. Formaggia and S. Perotto. New anisotropic a priori error estimates. Numer. Math., 89:641–667, 2001.

    MathSciNet  MATH  Google Scholar 

  11. L. Formaggia and S. Perotto. Anisotropic error estimates for elliptic problems. Numer. Math., 94(1):67–92, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Jacot and M. Rappaz. A pseudo front tracking technique for the modelling of solidification microstrucures in multicomponent alloys. Acta Materialia, 50:1909–1926, 2002.

    Article  Google Scholar 

  13. D. Kessler and J.-F. Scheid. A priori error estimates for a phase-field model for the solidification process of a binary alloy. IMA J. Numer. Anal., 22:281–305, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Kruger, M. Picasso, and J.-F. Scheid. A posteriori error estimates and adaptive finite elements for a nonlinear parabolic problem arising from solidification. Comput. Methods Appl. Mech. Engrg., 192:535–558, 2001.

    Article  MathSciNet  Google Scholar 

  15. M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based on zienkiewicz-zhu error estimator. Comm. Numer. Methods Engnrg., 19:13–23, 2002.

    Article  MathSciNet  Google Scholar 

  16. M. Picasso. An anisotropic error indicator based on zienkiewicz-zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comp., 24:1328–1355, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Rappaz and J.-F. Scheid. Existence of solutions to a phase-field model for the isothermal solidification process of a binary alloy. Math. Meth. Appl. Sci., 23:491–513, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Rappaz, A. Jacot, and W.J. Boettinger. Last stage solidification of alloys: a theoretical study of dendrite arm and grain coalescence. Met. Trans. A, 34:467–479, 2003.

    Article  Google Scholar 

  19. R. Rodríguez. Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differential Equations, 10(5):625–635, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Tiaden, B. Nestler, H. J. Diepers, and I. Steinbach. The multiphase-field model with an integrated concept for modelling solute diffusion. Physica D: Nonlinear Phenomena, 115(1–2):73–86, 1998.

    Article  MATH  Google Scholar 

  21. A. Visintin. Models of phase transitions. Birkhäuser Boston Inc., Boston, MA, 1996.

    Book  MATH  Google Scholar 

  22. J. A. Warren and W. J. Boettinger. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field model. Acta metall. mater., 43(2):689–703, 1995.

    Article  Google Scholar 

  23. O. Zienkiewicz and J. Zhu. A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg., 24(2):337–357, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  24. O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. Internat. J. Numer. Methods Engrg., 33(7):1331–1364, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burman, E., Picasso, M., Rappaz, J. (2004). Analysis and Computation of Dendritic Growth in Binary Alloys Using a Phase-Field Model. In: Feistauer, M., Dolejší, V., Knobloch, P., Najzar, K. (eds) Numerical Mathematics and Advanced Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18775-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18775-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62288-5

  • Online ISBN: 978-3-642-18775-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics