Skip to main content

Cellular Responses to DNA Damage — a Personal Account

  • Conference paper
Life Sciences and Radiation
  • 127 Accesses

Abstract

The field or Radiation Biology has seen in the last fifty years dramatic developments in its focus and a continuous movement forward internationally. Research topics and discoveries once thought to represent the interests of a highly specialized group of scientists are now main stream and attract an ever increasing number of researchers and clinicians active in areas as diverse as immunology, cancer, and radiation oncology -just to name a few. Initiated in the years during and just after the Second World War when the devastating long-term effects of the weapons of mass destruction used to end the war were just beginning to become apparent, the field of radiation biology has been transformed to a central player not only in radiation protection but also in radiation oncology and basic biology. By combining the expertise of Physicists, Chemists, Biologists and Physicians, the field has generated high standards for quantitative research and performed the seminal experiments that ultimately led to the characterization of the cell cycle and the checkpoint response — topics recently honored with the Nobel price. The field has moved from its initial focus in understanding and protecting against weapons of mass destruction to the now central role it plays in basic research, the diagnosis and treatment of disease, preservation of food and other perishables and even in recent times to the protection from biological terrorism. Truly, this is a story of how to beat swords into ploughshares. It is relatively common for fast developing fields of science to go through painful transitions in the process of transformation and adaptation to the ever-increasing demands of modern science, and Radiation Biology is not an exception. With a few years lag to North America, Radiation Biology Institutions are in the middle of a crisis in Germany and see their numbers decreasing at an alarming rate. Only targeted, active and sustained support will ensure maintenance of expertise in the country and will enable the development of competitive groups that will make their mark in modern biology and medicine internationally. The required reorientation into molecular/mechanistic studies and the needed expansion into translational investigations in the field of cancer research and treatment will only be successful if the field becomes revitalized. Here, I provide a brief outline of concepts and ideas that determine the future direction of basic research at the Institute of Medical Radiation Biology, Medical School University Duisburg-Essen, together with an account of past work that led to the formulation of these ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terasima T, Tolmach LJ (1963) X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 140:490–492

    Article  PubMed  CAS  Google Scholar 

  2. Elkind MM, Sutton H (1960) Radiation response of mammalian cells grown in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells. Radiat Res 13:556–593

    Article  PubMed  CAS  Google Scholar 

  3. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and Mutagenesis.: ASM Press, Washington, D.C.

    Google Scholar 

  4. Tobey RA (1975) Different drugs arrest cells at a number of distinct stages in G2. Nature 254:245–247

    Article  PubMed  CAS  Google Scholar 

  5. Elkind MM, Sutton-Gilbert H, Moses WB, Kamper C ( 1967) Sub-lethal and lethal radiation damage. Nature 214:1088–1092

    Article  PubMed  CAS  Google Scholar 

  6. Phillips RA, Tolmach LJ (1966) Repair of potentially lethal damage in x-irradiated hela cells. Radiat Res 29:413–432

    Article  PubMed  CAS  Google Scholar 

  7. Iliakis G (1988) Radiation induced potentially lethal damage: DNA lesions susceptible to fixation. (Review Article). Int J Radiat Biol 53:541–584

    Article  CAS  Google Scholar 

  8. Iliakis G (1980) Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich Ascites Tumour Cells. II. Monolayer Cultures. Int J Radiat Biol 37:591–600

    CAS  Google Scholar 

  9. Iliakis G, Pohlit W (1979) Quantitative Aspects on Repair of Potentially Lethal Damage in Mammalian Cells. Int J Radiat Biol 36:469–658

    Article  Google Scholar 

  10. Iliakis G (1980) Repair of potentially lethally damage in unfed plateau phase cultures of Ehrlich Ascites Tumor Cells. Int J Radiat Biol 37:365–372

    Article  CAS  Google Scholar 

  11. Iliakis G (1980) Effects of b-arabinofuranosyladenine on the growth and repair of potentially lethal damage in ehrlich ascites tumor cells. Rad Res 83:537–552

    Article  CAS  Google Scholar 

  12. Iliakis G, Nusse M (1982) Aphidicolin promotes repair of potentially lethal damage in irradiated mammalian cells synchronized in S-phase. Biochem Biophys Res Comm 4:1209–1214

    Article  Google Scholar 

  13. Iliakis G, Bryant PE (1983) Effects of the nucleoside analogues a-araA, b-araA and baraC on cell growth and repair of both potentially lethal damage and DNA double strand breaks in mammalian cells in culture. Anticancer Res 3:143–150

    PubMed  CAS  Google Scholar 

  14. Iliakis G (1983) Effects of arabinofuranosyladenine on potentially lethal damage induced in plateau phase mammalian cells exposed U.V.-light. Int J Radiat Biol 43:529–540

    Article  CAS  Google Scholar 

  15. Iliakis G, Nusse M (1983) The importance of G1/S-border and mitosis in the fixation of potentially lethal damage. Radiat Environm Biophys 22:201–207

    Article  CAS  Google Scholar 

  16. Iliakis G, Nusse M (1984) Arrest of irradiated G1, S, or G2 cells at mitosis using nocodazole promotes repair of potentially lethal damage. Radiat Res 99:346–351

    Article  PubMed  CAS  Google Scholar 

  17. Iliakis G, Nusse M (1983) Evidence that repair and expression of potentially lethal damage cause the variations in cell survival after x-irradiation observed through the cell cycle in Ehrlich Ascites tumor cells. Radiat Res 95:87–107

    Article  PubMed  CAS  Google Scholar 

  18. Iliakis G (1984) The influence of conditions affecting repair and expression of potentially lethal damage on the induction of 6-thioguanine resistance after exposure of mammalian cells to x-rays. Mutat Res 126:215–225

    Article  PubMed  CAS  Google Scholar 

  19. Iliakis G (1984) The mutagenicity of alpha particles in Ehrlich Ascites tumor cells. Radiat Res 99:52–58

    Article  PubMed  CAS  Google Scholar 

  20. Bertsche, U., Iliakis, G., and Kraft, G. Inactivation of Ehrlich Ascites tumor cells by heavy ions. Radiat Res 95:57–67, 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Bertsche U. Iliakis G (1987) Modification in repair and expression of potentially lethal damage (alpha-PLD) as measured by delayed-plating or treatment with beta-araA in plateau-phase Ehrlich Ascites tumor cells after exposure to charged particles of various specific energies. Radiat Res 111:26–46

    Article  PubMed  CAS  Google Scholar 

  22. Iliakis G, Ngo FQ H, Roberts WK, Youngman K (1985) Evidence for similarities between radiation damage expressed by b-araA and damage involved in the interaction effect observed after exposure of V79 cells to mixed neutron and gamma radiation. Radiat Res 104:303–316

    Article  PubMed  CAS  Google Scholar 

  23. Iliakis G, Wright E, Ngo FQH (1987) Possible importance of PLD repair in the modulation of BrdUrd and IdUrd-mediated radiosensitization in plateau-phase 10 T1/2 mouse embryo cells. Int J Radiat Biol 51:541–548

    Article  CAS  Google Scholar 

  24. Iliakis G, Kurtzman S, Pantelias GE, Okayasu R (1989) Mechanism of radiosensitization by halogenated pyrimidines: Effect of BrdUrd on radiation induction of DNA and chromosome damage and its correlation with cell killing. Radiat Res 119:286–304

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Okayasu R, Iliakis G (1991) Effects of IdU on the repair of radiation induced PLD, interphase chromatin breaks and DNA double strand breaks in CGO cells. Int J Radiat Oncol Bio Phys 23:353–360

    Article  Google Scholar 

  26. Iliakis G, Pantelias G, Kurtzman S (1991) Mechanism of radiosensitization by halogenated pyrimidines: Effect of BrdU on cell killing and interphase chromosome breakage in radiation-sensitive cells. Radiat Res 125:56–64

    Article  PubMed  CAS  Google Scholar 

  27. Iliakis G, Kurtzman S (1991) Mechanism of radiosensitization by halogenated pyrimidines: BrdU and beta-arabinofuranosyladenine affect similar subsets of radiation induced potentially lethal lesions in plateau-phase CHO cells. Radiat Res 127:45–51

    Article  PubMed  CAS  Google Scholar 

  28. Iliakis G, Wang Y, Pantelias G, Metzger L (1992) Mechanism of radiosensitization by halogenated pyrimidines: Effect of BrdU on repair of DNA breaks, interphase chromatin breaks and potentially lethal damage in plateau-phase CHO cells. Radiat Res 129:202–211

    Article  PubMed  CAS  Google Scholar 

  29. Iliakis G, Bryant PE, Ngo FQH (1985) Independent forms of potentially lethal damage fixed in plateau-phase Chinese hamster cells by post-irradiation treatment in hypertonic salt solution or araA. Radiat Res 104:329–345

    Article  PubMed  CAS  Google Scholar 

  30. Iliakis G, Ngo FQH (1985) Evidence for the induction of two types of potentially lethal damage after exposure of plateau phase Chinese hamster V79 cells to g-rays. Radiat Environ Biophys 24:185–202

    Article  PubMed  CAS  Google Scholar 

  31. Iliakis, G. Evidence for the induction of two types of potentially lethal damage after exposure of plateau phase Chinese hamster V79 cells to g-rays. Radiat Environ Biophys 24:185–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Iliakis G, Wright E, Roberts WK., Ngo FQH (1986) Evidence for differences among the sectors of potentially lethal damage expressed by hypertonic treatment in Plateau Phase V79-cells after exposure to neutrons and Gamma-rays. The importance of distinction between alpha and beta-PLD forms. Radiat Res 108:23–33

    Article  PubMed  CAS  Google Scholar 

  33. Iliakis G, Metzger L, Muschel RJ,. McKenna WG (1990) Induction and repair of DNA double strand breaks in radiation resistant cells obtained by transformation of primary rat embryo cells with the oncogenes H-ras and v-myc. Cancer Res 50:6575–6579

    PubMed  CAS  Google Scholar 

  34. Pantelias GE, Maillie HD (1983) A simple method for premature chromosome condensation induction in primary human and rodent cells using polyethylene glycol. Somatic Cell Genetics 9:533–547

    Article  PubMed  CAS  Google Scholar 

  35. Iliakis G Pantelias GE, Okayasu R, Seaner R (1987) 125IdUrd-induced chromosome fragments, assayed by premature chromosome condensation, and DNA double-strand breaks have similar repair kinetics in G1-phase CHO-cells. Int J Radiat Biol 52:705–722

    Article  CAS  Google Scholar 

  36. Iliakis G, Okayasu R, Seaner R (1988) Radiosensitive xrs-5 and parental CHO cells show identical DNA neutral filter elution dose-response:Implications for a relationship between cell radiosensitivity and induction of DNA double-strand breaks. Int J Radiat Biol 54:55–62

    Article  PubMed  CAS  Google Scholar 

  37. Iliakis G, Okayasu R (1988) The level of induced DNA double strand breaks does not correlate with cell killing in X-irradiated mitotic and G1-phase CHO-cells. Int J Radiat Biol 53:395–404

    Article  CAS  Google Scholar 

  38. Okayasu, R., Bloecher, D., and Iliakis, G. Variation through the cell cycle of DNA neutral filter elution dose response in X-irradiated synchronous CHO-cells. Int J Radiat Biol 53:729–747, 1988.

    Article  CAS  Google Scholar 

  39. Okayasu R, Iliakis G (1989) Linear DNA elution dose response curves obtained in CHO cells with non-unwinding filter elution after appropriate selection of the lysis conditions. Int J Radiat Biol 55:569–581

    Article  PubMed  CAS  Google Scholar 

  40. Bloecher D, Iliakis G (1991) Size distribution of DNA molecules recovered from nondenaturing filter elution. Int J Radiat Biol 59:919–926

    Article  Google Scholar 

  41. Iliakis GE, Cicilioni O, Metzger L (1991) Measurement of DNA double strand breaks in CHO cells at various stages of the cell cycle using pulsed field gel electrophoresis: Calibrations by means of 125I decay. Int J Radiat Biol 59:343–357

    Article  PubMed  CAS  Google Scholar 

  42. Metzger L, Iliakis G (1991) Kinetics of DNA double strand breaks throughout the cell cycle as assayed by pulsed field gel electrophoresis in CHO cells. Int J Radiat Biol 59:1325–1339

    Article  PubMed  CAS  Google Scholar 

  43. Iliakis G, Metzger L, Denko N, Stamato TD (1991) Detection of DNA double strand breaks in synchronous cultures of CHO cells by means of asymmetric field inversion gel electrophoresis. Int J Radiat Biol 59:321–341

    Article  PubMed  CAS  Google Scholar 

  44. Cheng X., Pantelias GE, Okayasu R, Cheong N, Iliakis G (1993) MPF activity of inducer mitotic cells may affect the radiation yield of interphase chromosome breaks in the premature chromosome condensation assay. Cancer Res 53:5592–5596

    PubMed  CAS  Google Scholar 

  45. Iliakis G, Okayasu R, Varlotto J, Shernoff C, Wang Y (1993) Hypertonic treatment during premature chromosome condensation allows visualization of interphase chromosome breaks repaired with fast kinetics in irradiated CHO cells. Radiation Res 135:160–170

    Article  PubMed  CAS  Google Scholar 

  46. Okayasu R, Iliakis G (1993) Evidence that the product of the xrs gene is predominantly involved in the repair of a subset of radiation-induced interphase chromosome breaks rejoining with fast kinetics. Radiation Res 138:34–43

    Article  Google Scholar 

  47. Okayasu, R., Cheong, N., and Iliakis (1993) G. Comparison of yields and repair kinetics of interphase chromosome breaks visualized by Sendai-Virus or polyethylene glycol mediated cell fusion in irradiated CHO cells. Int J Radiat Biol 64:689–694

    Article  PubMed  CAS  Google Scholar 

  48. Okayasu R, Iliakis G (1993) Ionizing radiation induces two forms of interphase chromosome breaks in CHO cells that rejoin with different kinetics and show different sensitivity to treatment in hypertonic medium or b-araA. Radiat Res 136:262–270

    Article  PubMed  CAS  Google Scholar 

  49. Okayasu R, Pantelias GE, Iliakis G (1993) Increased frequency of formation of interphase ring-chromosomes in radiosensitive irs-1 cells exposed to x-rays. Mutat Res 294:199–206

    Article  PubMed  CAS  Google Scholar 

  50. Okayasu, R., Varlotto, J., and Iliakis, G. Hypertonic treatment does not affect the radiation yield of interphase chromosome breaks in DNA double-strand break repair deficient xrs-5 cells. Radiat Res 135:171–177, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Iliakis, G. and Pantelias, G. E. Effects of hyperthermia on chromatin condensation and nucleoli disintegration as visualized by induction of premature chromosome condensation in interphase mammalian cells. Cancer Res 49:1254–1260, 1989.

    PubMed  CAS  Google Scholar 

  52. Iliakis G., Seaner R, Okayasu R (1990) Effects of hyperthermia on the repair of radiation induced DNA single and double strand breaks in DNA double strand break repair deficient and repair proficient cell lines. Int J Hypertherm 6:813–833

    Article  CAS  Google Scholar 

  53. Muschel RJ., Zhang, HB., Iliakis G, McKenna WG (1992) Effects of ionizing radiation on cyclin expression in HeLa cells. Radiat Res 132:153–157

    Article  PubMed  CAS  Google Scholar 

  54. McKenna WG, Iliakis G, Weiss MC, Bernhard EJ, Muschel RJ (1991) Increased G2 delay in radiation-resistance cells obtained by transformation of primary rate embryo cells with the oncogenes H-ras and v-myc. Radiat Res 125:283–287

    Article  PubMed  CAS  Google Scholar 

  55. Muschel RJ., Zhang HB, Iliakis G (1991) Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res 51:5113–5117

    PubMed  CAS  Google Scholar 

  56. Wang Y, Iliakis G (1992) Prolonged inhibition by x-rays of DNA synthesis in cells obtained by transformation of primary rat embryo fibroblasts with oncogenes H-ras and vmyc. Cancer Res 52:508–514

    PubMed  CAS  Google Scholar 

  57. Wang X, Iliakis G (1993) Persistent inhibition of DNA synthesis after radiation exposure in four clones obtained from rat embryo fibroblasts by transfection with the oncogenes H-ras plus v-myc. Int J Radiat Biol 64:165–168

    Article  PubMed  CAS  Google Scholar 

  58. Wang Y, Cheong N, Iliakis G (1993) Persistent inhibition of DNA synthesis in irradiated rat embryo fibroblasts expressing the oncogenes H-ras plus v-myc derives from inhibition of replicon initiation and is mitigated by staurosporine. Cancer Res 53:1213–1217

    PubMed  CAS  Google Scholar 

  59. Cheong N, Wang Y, Iliakis G (1993) Radioresistance induced in rat embryo cells by transfection with the oncogenes H-ras and v-myc is cell cycle dependent and maximal during S and G2. Int J Radiat Biol 64:623–629

    Article  Google Scholar 

  60. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  PubMed  CAS  Google Scholar 

  61. Thacker JA (1999) surfeit of RAD51-like genes? Trends Genet 15:166–168

    Article  PubMed  CAS  Google Scholar 

  62. Thompson LH, Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477:131–153

    Article  PubMed  CAS  Google Scholar 

  63. Pfeiffer P (1998) The mutagenic potential of DNA double-strand break repair. Toxicol Lett 96,97:119–129

    Article  Google Scholar 

  64. Ganguly, T. and Iliakis, G. A cell-free assay using cytoplasmic cell extracts to study rejoining of radiation-induced DNA double-strand breaks in human cell nuclei. Int J Radiat Biol 68:447–457, 1995.

    Article  PubMed  CAS  Google Scholar 

  65. Cheong, N., Okayasu, R., Shah, S., Ganguly, T., Mammen, P., and Iliakis, G. In vitro rej oining of double-strand breaks in cellular DNA by factors present in extracts of HeLa cells. Int J Radiat Biol 69:665–677, 1996.

    Article  PubMed  CAS  Google Scholar 

  66. Cheong, N., Perrault, R., and Iliakis, G. In vitro rejoining of DNA double strand breaks: A comparison of genomic-DNA with plasmid-DNA-based assays. Int J Radiat Biol 73:481–493, 1998.

    Article  PubMed  CAS  Google Scholar 

  67. Cheong N, Perrault AR, Wang H, Wachsberger P, Mammen P, Jackson I, Iliakis G (1999) DNA-PK-independent rejoining of DNA double-strand breaks in human cell extracts in vitro. Int J Radiat Biol 75:67–81

    Article  PubMed  CAS  Google Scholar 

  68. Perrault R, Cheong N, Wang H, Wang H, Iliakis G (2001) RPA facilitates rejoining of DNA double-strand breaks in an in vitro assay utilizing genomic DNA as substrate. Int J Radiat Biol 77:593–607

    Article  PubMed  CAS  Google Scholar 

  69. Wang Y, Huq MS, Cheng X, Iliakis G (1995) Regulation of DNA replication in irradiated cells by transacting factors. Radiat Res 142:169–175

    Article  PubMed  CAS  Google Scholar 

  70. Cheng X, Cheong N, Wang Y, Iliakis G (1996) Ionizing radiation-induced phosphorylation of RPA p34 is deficient in fibroblasts from ataxia telangiectasia and reduced in aged normal fibroblasts. Radiother Oncol 39:43–52

    Article  PubMed  CAS  Google Scholar 

  71. Wang Y, Huq MS. Iliakis G (1996) Evidence for activities inhibiting in trans initiation of DNA replication in extract prepared from irradiated cells. Radiat Res 145:408–418

    Article  PubMed  CAS  Google Scholar 

  72. Wang Y, Perrault AR, Iliakis G (1997) Down-regulation of DNA replication in extracts of camptothecin-treated cells: Activation of an S-phase checkpoint? Cancer Res 57:1654–1659

    PubMed  CAS  Google Scholar 

  73. Wang Y, Perrault AR, Iliakis G (1998) Replication protein A as a potential regulator of DNA replication in cells exposed to hyperthermia. Radiat Res 149:284–293

    Article  PubMed  CAS  Google Scholar 

  74. Wang Y, Zhou XY, Wang H-Y, Iliakis G (1999) Roles of replication protein A and DNA-dependent protein kinase in the regulation of DNA replication following DNA damage. J Biol Chem 274:22060–22064

    Article  PubMed  CAS  Google Scholar 

  75. Iliakis G, Wang Y, Wang H-Y (1999) Analysis of inhibition of DNA replication in irradiated cells using the SV40 based in vitro assay of DNA replication. In: Henderson DS (ed) Methods in Molecular Biology, DNA Repair Protocols: Eukaryotic Systems, Vol. 113, pp. 543–553. Totowa, NJ: Humana Press Inc.

    Chapter  Google Scholar 

  76. Wang J-L, Wang X, Wang H, Iliakis G, Wang Y (2002) CHK1-Regulated S-phase Checkpoint Response Reduces Camptothecin Cytotoxity. Cell Cycle 1:267–272

    Article  PubMed  CAS  Google Scholar 

  77. Wang X, Khadpe J, Hu B, Iliakis G, Wang Y (2003) An Over-activated ATR/CHK1 Pathway is Responsible for the Prolonged G2 Accumulation in Irradiated AT Cells. Journal of Biological Chemistry, in press

    Google Scholar 

  78. Wang X, Li GC, Iliakis G, Wang Y (2002) Ku Affects the CHK1-dependent G2 Checkpoint after Ionizing Radiation. Cancer Res 62:6031–6034

    PubMed  CAS  Google Scholar 

  79. Wang H, Wang X, Zhou X-Y, Chen DJ, Li GC, Iliakis, G, Wang Y (2002) Ku Affects the Ataxia and Rad 3-related/CHK1-dependent S Phase Checkpoint Response after Camptothecin Treatment. Cancer Res 62:2483–2487

    PubMed  CAS  Google Scholar 

  80. Zhou X-Y, Wang X, Hu B, Guan J, Iliakis G, Wang Y (2002) An ATM-independent S-Phase Checkpoint Response Involves CHK1 Pathway. Cancer Res 62:1598–1603

    PubMed  CAS  Google Scholar 

  81. DiBiase S, Zeng Z-C, Chen R, Hyslop PA, Curran Jr. W, Iliakis G (2000) DNA-dependent Protein Kinase Stimulates an Independently Active, Nonhomologous, End-Joining Apparatus. Cancer Res 60:1245–1253

    PubMed  CAS  Google Scholar 

  82. Wang H, Zeng Z-C, Bui T-A, DiBiase SJ, Qin W, Xia F, Powell SN, Iliakis G (2001) Nonhomologous end-joining of ionizing radiation-induced DNA double stranded breaks in human tumor cells deficient in BRCA1 or BRCA2. Cancer Res 61:270–277

    PubMed  CAS  Google Scholar 

  83. Wang H, Zeng Z-C, Bui T-A, Sonoda E, Takata M, Takeda S, Iliakis G (2001) Efficient rejoining of radiation-induced DNA double-strand breaks in vertebrate cells deficient in genes of the RAD52 epistasis group. Oncogene 20:2212–2224

    Article  PubMed  CAS  Google Scholar 

  84. Wang H, Zhao-Chong Z, Perrault AR, Cheng X, Qin W, Iliakis G (2001) Genetic evidence for the involvement of DNA ligase IV in the DNA-PK-dependent pathway of nonhomologous end joining in mammalian cells. Nucleic Acids Res 29:1653–1660

    Article  PubMed  CAS  Google Scholar 

  85. Nevaldine B, Longo JA, Hahn PJ (1997) The scid defect results in much slower repair of DNA double-strand breaks but not high levels of residual breaks. Radiat Res 147:535–540

    Article  PubMed  CAS  Google Scholar 

  86. DiBiase SJ, Zeng Z-C, Chen R, Hyslop T, Curran WJ Jr., Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60:1245–1253

    PubMed  CAS  Google Scholar 

  87. Loebrich M, Rydberg B, Cooper PK (1995) Repair of x-ray-induced DNA double-strand breaks in specific Not I restriction fragments in human fibroblasts: Joining of correct and incorrect ends. Proc Natl Acad Sci US 92:12050–12054

    Article  Google Scholar 

  88. Asaad NA, Zeng Z-C, Guan J, Thacker J, Iliakis G (2000) Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: Reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene 19:5788–5800

    Article  PubMed  CAS  Google Scholar 

  89. Cheong N, Wang Y, Jackson, M. Iliakis G (1992) Radiation-sensitive irs mutants rejoin DNA double strand breaks with efficiency similar to that of parental V79 Cells but show altered response to radiation induced G2-delay. Mutat Research 274:111–122

    Article  CAS  Google Scholar 

  90. Roth DB, Porter TM, Wilson JH (1985) Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Biol 5:2599–2607

    PubMed  CAS  Google Scholar 

  91. Petiniot LK, Weaver Z, Vacchio M, Shen R, Wangsa D, Barlow C, Eckhaus M, Steinberg SM, Wynshaw-Boris A, Ried T, Hodes RJ (2002) RAG-Mediated V(D)J Recombination Is Not Essential for Tumorgenesis in Atm-Deficient Mice. Mol Cell Biol 22:3174–3177

    Article  PubMed  CAS  Google Scholar 

  92. Zhu C, Mills KD, Ferguson DO, Lee C. Manis J, Fleming J, Gao, Y, Morton CC, Alt FW (2002) Unrepaired DNA Breaks in p53-Deficient Cells Lead to Oncogenic Gene Amplification Subsequent to Translocations. Cell 109:811–821

    Article  PubMed  CAS  Google Scholar 

  93. Sharpless NE, Ferguson DO, O’Hagan RC, Castrillon DH, Lee C, Farazi PA, Alson S, Fleming J, Morton CC, Frank K, Chin L, Alt FW, DePinho RA (2001) Impaired Nonhomologous End-Joining Provokes Soft Tissue Sarcomas Harboring Chromosomal Translocations, Amplifications, and Deletions. Mol Cell 8:1187–1196

    Article  PubMed  CAS  Google Scholar 

  94. Liao M-J, Van Dyke T (1999) Critical role for Atm in suppressing V(D)J recombinationdriven thymic lymphoma. Genes Developm 13:1246–1250

    Article  CAS  Google Scholar 

  95. Vanasse, G. J., Halbrook, J., Thomas, S., Burgess, A., Hoekstra, M. F., Disteche, C. M., and Willerford (1999) D. M. Genetic pathway to recurrent chromosome translocations in murine lymphoma involves V(D)J recombinase. J Clin Invest 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  96. Gao Y, Ferguson D O, Xie W, Manis JP, Sekiguchi JA, Frank KM, Chaudhuri J, Horner J, DePinho RA, Alt FW (2000) Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404:897–900

    Article  PubMed  CAS  Google Scholar 

  97. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig NC, Max EE, Ried T, Nussenzweig A (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404:510–514

    Article  PubMed  CAS  Google Scholar 

  98. Pierce AJ, Stark JM, Araujo FD, Moynahan, ME, Berwick M, Jasin M (2001) Doublestrand breaks and tumorigenesis. Trends Cell Biol 11:S52–S59

    PubMed  CAS  Google Scholar 

  99. Johnson RD, Jasin M (2001) Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 29:196–201

    Article  PubMed  CAS  Google Scholar 

  100. Kinzler KW, Vogelstein B (1997) Cancer-susceptibility genes. Gatekeepers and caretakers [news; comment]. Nature 386:761–763

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Iliakis, G. (2004). Cellular Responses to DNA Damage — a Personal Account. In: Kiefer, J. (eds) Life Sciences and Radiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18687-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18687-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62246-5

  • Online ISBN: 978-3-642-18687-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics