Skip to main content

Modeling and Simulations of the Dynamics of Growing Cell Clusters

  • Chapter
Advances in Cell Mechanics

Abstract

A phenomenological discrete model for the dynamics of growing cell clusters is presented. Each cell is modeled as a growing deformable solid which can interact mechanically with its neighbors by means of adhesion and repulsion forces. By defining simple behavior rules based on the age and the mechanical state of the cells, simple cluster dynamics can be reproduced. The framework is far from complete, but describes the essential features required for more complete mechanical simulations of cell ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Young J S. The invasive growth of malignant tumours: An experimental interpretation based on elastic-jelly models. J Pathol Bacteriol, 77(2): 321–39, Apr 1959.

    Article  Google Scholar 

  2. Eaves G. The invasive growth of malignant tumours as a purely mechanical process. J. Pathol., 109(3): 233–7, 1973.

    Article  Google Scholar 

  3. Helmlinger G, Netti P A, Lichtenbeld H C, et al. Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotechnol, 15(8): 778–83, 1997.

    Article  Google Scholar 

  4. Koike C, McKee T D, Pluen A, et al. Solid stress facilitates spheroid formation: Potential involvement of hyaluronan. Br J Cancer, 86(6): 947–53, 2002.

    Article  Google Scholar 

  5. Brú A and Casero D. The effect of pressure on the growth of tumour cell colonies. J Theor Biol, 243(2): 171–80, 2006.

    Article  Google Scholar 

  6. Patel M and Nagl S. Mathematical models of cancer. In cancer bioinformatics: From therapy to treatment, pages 59–93. John Wiley & Sons, 2006.

    Google Scholar 

  7. Araujo R P and McElwain D L S. A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol, 66(5): 1039–1091, 2004.

    Article  MathSciNet  Google Scholar 

  8. Alarcon T, Byrne H M, and Maini P K. A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol, 225(2): 257–274, 2003.

    Article  MathSciNet  Google Scholar 

  9. Qi A S, Zheng X, Du C Y, et al. A cellular automaton model of cancerous growth. J Theor Biol, 161(1): 1–12, 1993.

    Article  Google Scholar 

  10. Coughlin M F and Stamenovic D. A tensegrity model of the cytoskeleton in spread and round cells. J Biomech Eng, 120(6): 770–777, 1998.

    Article  Google Scholar 

  11. Ingber D E. Tensegrity I. cell structure and hierarchical systems biology. J Cell Sci, 116(Pt 7): 1157–1173, 2003.

    Article  Google Scholar 

  12. Mijailovich S M, Kojic M, Zivkovic M, et al. A finite element model of cell deformation during magnetic bead twisting. J Appl Physiol, 93(4): 1429–36, 2002.

    Google Scholar 

  13. McGarry J G and Prendergast P J. A three-dimensional finite element model of an adherent eukaryotic cell. European Cells and Materials, 7: 27–34, 2004.

    Google Scholar 

  14. Dao M, Lim C T and Suresh S. Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids, 51(11–12): 2259–2280, 2003.

    Article  Google Scholar 

  15. Lim C T, Dao M, Suresh S, et al. Large deformation of living cells using laser traps. Acta Materialia, 52(7): 1837–1845, 2004.

    Article  Google Scholar 

  16. Peeters E A G, Oomens C W J, Bouten C V C, et al. Mechanical and failure properties of single attached cells under compression. J Biomech, 38(8): 1685–93, 2005.

    Article  Google Scholar 

  17. David Boal. Mechanics of the Cell. Cambridge University Press, Cambridge, England, 2002.

    Google Scholar 

  18. McGarry J P. Characterization of cell mechanical properties by computational modeling of parallel plate compression. Annals of Biomedical Engineering, 37(11): 2317–2325, 2009.

    Article  Google Scholar 

  19. Sauer R A and Li S. An atomic interaction-based continuum model for adhesive contact mechanics. Finite Elements in Analysis and Design, 43: 384–396, 2007.

    Article  MathSciNet  Google Scholar 

  20. Sauer R A and Wriggers P. Formulation and analysis of a three-dimensional finite element implementation for adhesive contact at the nanoscale. Comput. Meth. Appl. Mech., 198:3871–3883, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes T J R. The Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

    MATH  Google Scholar 

  22. Oakley D R and Knight N F. Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures, Part I: Formulation. Comput. Meth. Appl. Mech., 126(1–2): 67–898, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. Oakley D R and Knight N F. Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures, Part II: Single-processor implementation. Comput. Meth. Appl. Mech., 126: 91–109, 1995.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romero, I., Arribas, J.J. (2011). Modeling and Simulations of the Dynamics of Growing Cell Clusters. In: Li, S., Sun, B. (eds) Advances in Cell Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17590-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17590-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17589-3

  • Online ISBN: 978-3-642-17590-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics