Skip to main content

Construction of Covariance Functions and Unconditional Simulation of Random Fields

  • Conference paper
  • First Online:
Advances and Challenges in Space-time Modelling of Natural Events

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 207))

Abstract

Covariance functions and variograms are the most important ingredients in the classical approaches to geostatistics. We give an overview over the approaches how models can be obtained. Variant types of scale mixtures turn out to be the most important way of construction. Some of the approaches are closely related to simulation methods of unconditional Gaussian random field, for instance the turning bands and the random coins. We discuss these methods and complement them by an overview over further methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, M.: Positive definiteness is not enough. Math. Geol. 24, 135–143 (1992)

    Article  Google Scholar 

  2. Ballani, F., Kabluchko, S., Schlather, M.: Random marked sets. ArXiv 0903.2388(2009)

    Google Scholar 

  3. Barndorff-Nielsen, O.: Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist. 5, 151–157 (1978)

    MathSciNet  MATH  Google Scholar 

  4. Berg, C.: Hunt convolution kernels which are continuous singular with respect to Haar measure. In Probability Measures on Groups. 706of Lecture Notes in Mathematics, 10–21. Springer, Berlin (1979)

    Google Scholar 

  5. Berg, C.: Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity. In E. Porcu and J. Mateu (Eds.), Positive Definite Functions: From Schoenberg to Space-Time Challenges. Castellon de la Plana: Citeseer (2008)

    Google Scholar 

  6. Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14(4), 1134–1149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Boston (2004)

    Book  MATH  Google Scholar 

  8. Berschneider, G., Sasvári, Z.: On a theorem of Karhunen and related moment problems and quadrature formulae. Proceedings IWOTA 2010. To appear

    Google Scholar 

  9. Billingsley, P.: Probability and Measure (third ed.). John Wiley & Sons, New York, Chichester, Brisbane (1995)

    MATH  Google Scholar 

  10. Bochner, S.: Vorlesungen über Fouriersche Integrale. Akademische Verlagsgesellschaft, Leipzig (1932)

    Google Scholar 

  11. Bochner, S.: Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108, 378–410 (1933)

    MathSciNet  Google Scholar 

  12. Buhmann, M.: Radial basis functions: theory and implementations. University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Chan, G., Wood, A.: An algorithm for simulating stationary Gaussian random fields. J. R. Statist. Soc., Ser. C 46, 171–181 (1997)

    Google Scholar 

  14. Chan, G. A. Wood.: Simulation of stationary gaussian vector fields. Statistics and Computing 9, 265 – 268 (1999)

    Google Scholar 

  15. Chilès, J.-P., Delfiner, P.: Geostatistics. Modeling Spatial Uncertainty. John Wiley & Sons, New York, Chichester (1999)

    Book  MATH  Google Scholar 

  16. Cox, D., Isham, V.: A simple spatial-temporal model of rainfall. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 415, 317–328 (1988)

    Google Scholar 

  17. Cox, D., Miller, H.: The Theory of Stochastic Processes. Chapman & Hall, London (1965)

    MATH  Google Scholar 

  18. Cressie, N.: Statistics for Spatial Data. John Wiley & Sons, New York, Chichester (1993)

    Google Scholar 

  19. Cressie, N., Huang, H.C.: Classes of nonseparable, spatio-temporal stationary covariance functions. J. Am. Stat. Assoc. 94, 1330–1340 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Daley, D. Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York, Berlin, Heidelberg (1988)

    MATH  Google Scholar 

  21. de Cesare, L., Myers, D., Posa, D.: Fortran programs for space-time modeling. Comput. Geosci. 28, 205–212 (2002)

    Article  Google Scholar 

  22. de Iaco, S., D. Myers, and D. Posa (2002). Nonseparable space-time covariance models: some parameteric families. Math. Geol. 34, 23–42.

    Article  MathSciNet  MATH  Google Scholar 

  23. Dietrich, C., Newsam, G.: A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resour. Res 29, 2861–2869 (1993)

    Article  Google Scholar 

  24. Dietrich, C., Newsam, G.: A fast and exact method for multidimensional Gaussian stochastic simulations: Extensions to realizations conditioned on direct and indirect measurement. Water Resour. Res 32, 1643–1652 (1996)

    Article  Google Scholar 

  25. Fasen, V., Klüppelberg, C., Schlather, M.: High-level dependence in time series models. Extremes 13, 1–33 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fouquet, C. d.: Simulation conditionnelle de fonctions aléatoires: cas gaussien stationnaire et schéma linéaire. Technical Report Cours C-151, Ecole des Mines de Paris (1993)

    Google Scholar 

  27. Genton, M.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)

    MathSciNet  Google Scholar 

  28. Gneiting, T.: Normal scale mixtures and dual probability densities. J. Stat. Comput. Simul. 59, 375–384 (1997)

    Article  MATH  Google Scholar 

  29. Gneiting, T.: Closed form solutions of the two-dimensional turning bands equation. Math. Geol. 30, 379–390 (1998a)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gneiting, T.: The correlation bias for two-dimensional simulations by turning bands. Math. Geol. 31, 195–211 (1998b).

    Google Scholar 

  31. Gneiting, T.: Correlation functions for atmospheric data analysis. Q. J. Roy. Meteor. Soc. 125, 2449–2464 (1999a)

    Article  Google Scholar 

  32. Gneiting, T.: On the derivatives of radial positive definite functions. J. Math. Anal. Appl. 236, 86–93 (1999b)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivariate Anal. 69, 88–119 (1999c)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gneiting, T.: Compactly supported correlation functions. J. Multivariate Anal. 83, 493–508 (2002a)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gneiting, T.: Nonseparable, stationary covariance functions for space-time data. J. Amer. Statist. Assoc. 97, 590–600 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gneiting, T., Genton, M., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In B. Finkenstadt, L. Held, and V. Isham (Eds.), Statistical Methods for Spatio-Temporal Systems, Chapter 4. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  37. Gneiting, T., Kleiber, W., Schlather, S.: Matérn cross-covariance functions for multivariate random fields. J. Amer. Statist. Assoc. 105, 1167–1177 (2011)

    Article  MathSciNet  Google Scholar 

  38. Gneiting, T., Sasvári, Z.: The characterization problem for isotropic covariance functions. Math. Geol. 31, 105–111 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Gneiting, T., Ševčíková, H., Percival, D., Schlather, M., Jiang, Y.: Fast and exact simulation of large Gaussian lattice systems in R 2: Exploring the limits. J. Comput. Graph. Stat. 15, 483–501 (2006)

    Article  Google Scholar 

  40. Golubov, B.: On Abel-Poisson type and Riesz mean. Anal. Math. 7, 161–184 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  41. Goulard, M., Voltz, M.: Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix. Math. Geol. 24, 269–282 (1992)

    Article  Google Scholar 

  42. Gradshteyn, I., Ryzhik, I.: Table of Integrals, Series, and Products (6th ed.). Academic Press, London, (2000)

    MATH  Google Scholar 

  43. Gupta, V., Waymire, E.: On taylor’s hypothesis and dissipation in rainfall. J. Geophys. Res. 92, 9657–9660 (1987)

    Article  Google Scholar 

  44. Guttorp, P., Gneiting, T.: On the Matern correlation family. Biometrika 93(4), 989 (2006)

    MathSciNet  Google Scholar 

  45. Hubbert, S.: Closed form representations for a class of compactly supported radial basis functions. Adv. Comput. Math.. DOI: 10.1007/s10444-011-9184-5, Online (2011)

    Google Scholar 

  46. Itô, K. (Ed.) Encyclopedic Dictionary of Mathematics (third ed.). MIT Press Cambridge, MA (1996)

    Google Scholar 

  47. Jeulin, D., Jeulin. P.: Synthesis of rough surfaces of random morphological functions. Stereo. Iugosl. 3, 239–246 (1981)

    Google Scholar 

  48. Jones, R., Zhang, Y.: Models for continuous stationary space-time processes. In T. Gregoire, D. Brillinger, P.J.Diggle, E. Russek-Cohen, W. Warren, and R. Wolfinger (Eds.), Modelling Longitudinal and Spatially Correlated Data, 289–298. Springer, New York (1997)

    Google Scholar 

  49. Journel, A., Huijbregts, C.: Mining Geostatistics. Academic Press, London: (1978)

    Google Scholar 

  50. Kabluchko, Z., Schlather, M.: Ergodic properties of max-infinitely divisible processes. Stochastic Process. Appl. 120, 281–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042–2065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Karhunen, K.: Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fenn., Ser. I. A. Math. 34, 1–7 (1946)

    Google Scholar 

  53. Kolovos, A., Christakos, G., Hristopulos, D., Serre, M.: Methods for generating non-separable spatiotemporal covariance models with potential environmental applications. Adv. Water. Res. 27, 815–830 (2004)

    Article  Google Scholar 

  54. Kyriakidis, P., Journel, A.: Geostatistical space-time models: A review. Math. Geol. 31, 651–684 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lantuéjoul, C.: Geostatistical Simulation. Springer, Berlin (2002)

    MATH  Google Scholar 

  56. Lindgren, F., Rue, H., Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Statist. Soc., Ser. B 73, 423–498 (2011)

    Google Scholar 

  57. Ma, C.: Spatio-temporal covariance functions generated by mixtures. Math. Geol. 34, 965–975 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ma, C.: Families of spatio-temporal stationary covariance models. J. Stat. Plann. Inference 116, 489–501 (2003)

    Article  MATH  Google Scholar 

  59. Ma, C.: Spatio-temporal variograms and covariance models. Adv. Appl. Probab. 37, 706–725 (2005)

    Article  MATH  Google Scholar 

  60. Ma, C.: Recent developments on the construction of spatio-temporal covariance models. Stoch. Environ. Res. Risk. Asses. 22, 39–47 (2008)

    Article  MATH  Google Scholar 

  61. Mantoglou, A.: Digital-simulation of multivariate two-dimensional and three-dimensional stochstic processes with a spectral turning bands method. Math. Geol. 19, 129–149 (1987)

    Google Scholar 

  62. Matérn, B.: Spatial Variation (second ed.). Springer, Berlin, New York (1986)

    MATH  Google Scholar 

  63. Mateu, J., E. Porcu, Nicolis, O.: A note on decoupling of local and global behaviours for the Dagum random field. Probab. Engineer. Mech. 22, 320–329 (2007)

    Google Scholar 

  64. Matheron, G.: Les variables régionalisées et leur estimation. Une application de la théorie des fonctions aléatoires aux Sciences de la Nature. Masson, Paris (1965)

    Google Scholar 

  65. Matheron, G.: La théorie des variables régionalisées, et ses applications. Les Cahiers du Centre de Morphologie Mathématique de Fontainebleau, Fascicule 5, Ecole des Mines de Paris (1970)

    Google Scholar 

  66. Matheron, G.: Leçon sur les fonctions aléatoire d’ordre 2. Technical Report C-53, Ecole des Mines de Paris (1972)

    Google Scholar 

  67. Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5, 439–468 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  68. Matheron, G.: Suffit-il, pour une covariance, d’être de type positif? Sci. de la Terre, Sér. Informatique Géologique 26, 51–66 (1987)

    Google Scholar 

  69. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York, St. Louis (1965)

    MATH  Google Scholar 

  70. Porcu, E., Daley, D., Buhmann,B., Bevilacqua, M.: Classes of compactly supported correlation functions for vector-valued random fields. In preparation (2011)

    Google Scholar 

  71. Porcu, E., Gregori, P., Mateu, J.: La descente et la montée étendues: the spatially d-anisotropic and the spatio-temporal case. Stoch. Environm. Res. Risk Assess. 21, 683–693 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Porcu, E., Mateu, J., Christakos, G.: Quasi-arithmetic means of covariance functions with potential applications to space-time data. J. Multivariate Anal. 100, 1830–1844 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  73. Porcu, E., Mateu, J., Zini, A., Pini, R.: Modelling spatio-temporal data: A new variogram and covariance structure proposal. Statist. Probab. Lett. 77(1), 83–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  74. Porcu, E., Schilling, R.: From Schoenberg to Pick-Nevanlinna: towards a complete picture of the variogram class. Bernoulli. 17(1), 441–455 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. Rodríguez-Iturbe, I., Mejía, J.: The design of rainfall networks in space and time. Water Resour. Res. 10, 713–728 (1974)

    Article  Google Scholar 

  76. Rouhani, S., Myers, D.: Problems in space-time kriging of geohydrological data. Math. Geol. 22, 611–623 (1990)

    Article  Google Scholar 

  77. Rue, L., Held, H.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC, Boca Raton, London (2005)

    Book  MATH  Google Scholar 

  78. Sasvári, Z.: Positive Definite and Definitizable Functions. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

  79. Schaback, R.: The missing Wendland functions. Adv. Computat. Math. 34, 67–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  80. Schaback, R., Wu, Z.: Operators on radial functions. J. Computat. Appl. Math. 73, 257–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  81. Scheuerer, M.: A Comparison of Models and Methods for Spatial Interpolation in Statistics and Numerical Analysis. Ph. D. thesis, Univ. Göttingen (2009)

    Google Scholar 

  82. Scheuerer, M., Schlather, M.: Covariance models for random vector fields. Submitted (2011)

    Google Scholar 

  83. Schilling, R., Song, R., Vondracek, Z.: Bernstein Functions. de Gruyter, Berlin, New York (2010)

    Google Scholar 

  84. Schlather, M.: Introduction to positive definite functions and to unconditional simulation of random fields. Technical Report ST-99-10, Lancaster University, Lancaster (1999)

    Google Scholar 

  85. Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  86. Schlather, M.: Some covariance models based on normal scale mixtures. Bernoulli 16, 780–797 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  87. Schlather, M.: RandomFields V 2.0: contributed extension package to R for the simulation of Gaussian and max-stable random fields. URL cran.r-project.org(2011)

  88. Schoenberg, I.: Metric spaces and completely monotone functions. Ann. Math. 39, 811–841 (1938)

    Article  MathSciNet  Google Scholar 

  89. Shkarofsky, I.P.: Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can. J. Phys. 46, 2133–2153 (1968)

    Article  Google Scholar 

  90. Stein, M.: Interpolation of Spatial Data. Springer, Heidelberg, New York, (1999)

    Book  MATH  Google Scholar 

  91. Stein, M.: Fast and exact simulation of fractional Brownian surfaces. J. Comput. Graph. Stat. 11, 587–599 (2002a)

    Article  Google Scholar 

  92. Stein, M.: The screening effect in kriging. Annals of Statistics 30, 298–323 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  93. Stein, M.: Nonstationary spatial covariance functions. Technical report, University of Chicago, URL www.stat.uchicago.edu/cises/research/cises-tr21.pdf(2005a)

  94. Stein, M.: Space-time covariance functions. J. Amer. Statist. Assoc. 100, 310–321 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  95. Vert, J., Tsuda, K., Schölkopf, B.: A primer on kernel methods. In B. Schölkopf, K. Tsuda, and J. Vert (Eds.), Kernel Methods in Computational Biology, pp. 35–70. The MIT Press, Cambridge, MA (2004)

    Google Scholar 

  96. Wackernagel, H.: Multivariate Geostatistics (3rd ed.). Springer, Berlin, Heidelberg (2003)

    MATH  Google Scholar 

  97. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  98. Widder, D.: What is the Laplace Transform? Amer. Math. Monthly 52, 419–425 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  99. Wood, A., Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d. J. Comput. Graph. Stat. 3, 409–432 (1994)

    MathSciNet  Google Scholar 

  100. Zastavnyi, V. Porcu, E. Characterization theorems for the Gneiting class space-time covariances. Bernoulli 17(1), 456–465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  101. zu Castell, W.: Recurrence relations for radial positive definite functions. J. Math. Anal. Appl. 271, 108–123 (2002)

    Google Scholar 

Download references

Acknowledgements

The author is grateful to Sebastian Engelke, Alexander Malinowski, Marco Oesting, Robert Schaback, and Kirstin Strokorb for valuable hints and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schlather .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schlather, M. (2012). Construction of Covariance Functions and Unconditional Simulation of Random Fields. In: Porcu, E., Montero, J., Schlather, M. (eds) Advances and Challenges in Space-time Modelling of Natural Events. Lecture Notes in Statistics(), vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17086-7_2

Download citation

Publish with us

Policies and ethics