Skip to main content

Simulation of Triflux Heat Exchangers in Utility Boilers

  • Conference paper
High Performance Computing in Science and Engineering '10

Abstract

In this paper the recent development of the coupled simulation of large utility boilers is described. The coupled simulation is an advanced tool to investigate the interaction between the furnace and the steam cycle of power plants. Gained knowledge is useful both for design of future facilities and optimisation of operational performance of existing power plants. In this article the detailed simulation of a Triflux Heat Exchanger (THX) is presented. In utility boilers THX are used to exchange heat between the flue gas, the Superheater (SH) and the Reheater (RH) steam cycle. The presented methodology allows to calculate the steam and tube temperatures of all heated tubes of an utility boiler including the THX. Results and a comparison between measured and calculated values are presented for a lignite-fired boiler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caretto, L.S., Gosman, A.D., Patankar S.V., Spalding, D.B.: Two calculation procedures for steady, three-dimensional flows with recirculation. Proc. Third Int. Conf. Numer. Methods Fluid Dyn., Paris (1972)

    Google Scholar 

  2. Çengel, Y.A.: Heat Transfer: A Practical Approach. McGraw-Hill Companies, New York (2002)

    Google Scholar 

  3. Knaus, H.: Simulation turbulenter reagierender Zweiphasenströmungen in industriellen Feuerungen mit komplexen Geometrien. VDI Verlag, Düsseldorf (2001)

    Google Scholar 

  4. Launder, B.E., Spalding D.B.: The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering, 3:269–289 (1974)

    Article  MATH  Google Scholar 

  5. Magnussen, B., Hjertager B.: On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp. (Int.) on Comb., pp. 719–729, The Combustion Institute (1976)

    Google Scholar 

  6. Noll, B.: Numerische Strömungsmechanik. Springer Verlag, Berlin (1993)

    MATH  Google Scholar 

  7. Rotta, J.: Statistische Theorie der Turbulenz, Zeitschrift für Physik, Vol. 129, S. 547–572 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  8. Rhie, C., Chow, W.: Numerical study of turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11):1525–1532 (1983)

    Article  MATH  Google Scholar 

  9. Risio, B.: Effizienz und Verlässlichkeit numerischer Vorhersagen zur rechnergestützten Optimierung von Grosskraftwerksbrennkammern. VDI Verlag, Düsseldorf (2001)

    Google Scholar 

  10. Rolf, A.: Simulation des nichtlinearen, dynamischen Verhaltens von Wärmetauschern sowie ihrer komplexen Schaltung im Kraftwerksbau mit einem semianalytischen Berechnungsverfahren. PhD thesis University of Stuttgart (1984)

    Google Scholar 

  11. Sauer, C.: Detaillierte gekoppelte Simulation von Kraftwerksfeuerung und Dampferzeuger. PhD thesis, University of Stuttgart (2007)

    Google Scholar 

  12. Sauer, C., Berreth, A., Risio, B., Schnell, U., Hein, K.R.G.: Application of a Porous Cell Model for the Simulation of Tube Bundles in Convective Parts of Industrial Utility Boilers. 6th European Conference on Industrial Furnaces Boilers (INFUB), Estoril - Lisbon (Portugal) (2002)

    Google Scholar 

  13. Scheffknecht, G.: Vorlesungsmanuskript Dampferzeugung (2006)

    Google Scholar 

  14. Schneider, R.: Beitrag zur numerischen Berechnung dreidimensionaler reagierender Strömungen in industriellen Brennkammern. PhD thesis, University of Stuttgart (1998)

    Google Scholar 

  15. Schnell, U.: Numerical modelling of solid fuel combustion process using advanced CFD-based simulation tools. Progress in Computational Fluid Dynamics, 1 (4), 208–218 (2002)

    Google Scholar 

  16. Stone, H.L.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal., 5, 530–558 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wagner, W., Kreztschmar, H.-J.: International Steam Tables. Springer Verlag, Berlin, (2008)

    Book  Google Scholar 

  18. Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, California (1993)

    Google Scholar 

  19. Zinser, W.: Zur Entwicklung mathematischer Flammenmodelle für die Verfeuerung technischer Brennstoffe. VDI Verlag, Düsseldorf (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matschke, A., Müller, M., Schnell, U., Scheffknecht, G. (2011). Simulation of Triflux Heat Exchangers in Utility Boilers. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering '10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15748-6_17

Download citation

Publish with us

Policies and ethics