Skip to main content

Disorders of Sulfur Amino Acid Metabolism

  • Chapter
Inborn Metabolic Diseases

Abstract

Several inherited defects are known in the conversion of the sulfur-containing amino acid methionine to cysteine and the ultimate oxidation of cysteine to inorganic sulfate (◘ Fig. 21.1). Cystathionine β-synthase (CBS) deficiency is the most important. It is associated with severe abnormalities of four organs or organ systems: the eye (dislocation of the lens), the skeleton (dolichostenomelia and arachnodactyly), the vascular system (thromboembolism), and the central nervous system (mental retardation, cerebrovascular accidents). A low-methionine, high-cystine diet, pyridoxine, folate and betaine in various combinations, and antithrombotic treatment may halt the otherwise unfavourable course of the disease. Methionine S-adenosyltransferase deficiency and γ-cystathionase deficiency usually do not require treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluijtmans LA, Boers GH, Verbruggen B et al. (1998) Homozygous cystathionine beta-synthase deficiency, combined with factor V Leiden or thermolabile methylenetetrahydrofolate reductase in the risk of venous thrombosis. Blood 91:2015–2018

    PubMed  CAS  Google Scholar 

  2. De Franchis R, Sperandeo MP, Sebastio G, Andria G (1998) The clinical aspects of cystathionine B-synthase deficiency: how wide is the spectrum? Italian Collaborative Study Group on Homocystinuria. Eur J Pediatr 157:867–870

    Article  Google Scholar 

  3. Mudd SH, Skovby F, Levy HL et al. (1985) The natural history of homocystinuria due to cystathionine R-synthase deficiency. Am J Hum Genet 37:1–31

    PubMed  CAS  Google Scholar 

  4. Skovby F, Gaustadnes M, Mudd SH (2010) A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol Genet Metab 99:1–3

    Article  PubMed  CAS  Google Scholar 

  5. Levy HL, Vargas JE, Waisbren SE et al. (2002) Reproductive fitness in maternal homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis 25:299–314

    Article  PubMed  CAS  Google Scholar 

  6. Fowler B (1985) Recent advances in the mechanism of pyridoxine-responsive disorders. J Inherit Metab Dis 8 [Suppl 1]:76–83

    Article  PubMed  CAS  Google Scholar 

  7. Jakubowski H (2008) The pathophysiological hypothesis of homocysteine thiolactone-mediated vascular disease. J Physiol Pharmacol. 59 (S9)155–167

    PubMed  Google Scholar 

  8. Watanabe M, Osada J, Aratani Y et al. (1995) Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci U S A 92:1585–1589

    Article  PubMed  CAS  Google Scholar 

  9. Miles EW, Kraus JP (2004) Cystathionine beta-synthase: structure, function, regulation, and location of homocystinuria-causing mutations. J Biol Chem 279:29871–29874

    Article  PubMed  CAS  Google Scholar 

  10. Sperandeo MP, de Franchis R, Andria G, Sebastio G (1996) A 68 bp insertion found in a homocystinuric patient is a common variant and is skipped by alternative splicing of the cystathionine β-synthase mRNA. Am J Hum Genet 59:1391–1393

    PubMed  CAS  Google Scholar 

  11. Romano M, Marcucci R, Buratti E et al. (2002) Regulation of 3’ splice site selection in the 844ins68 polymorphism of the cystathionine beta-synthase gene. J Biol Chem 277:43821–43829

    Article  PubMed  CAS  Google Scholar 

  12. Refsum H, Smith AD, Ueland PM et al. (2004) Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem 50:3–32

    Article  PubMed  CAS  Google Scholar 

  13. Peterschmitt MJ, Simmons JR, Levy HL (1999) Reduction of false negative results in screening of newborns for homocystinuria. N Engl J Med 341:1572–1576

    Article  PubMed  CAS  Google Scholar 

  14. Gan-Schreier H, Kebbewar M, Fang-Hoffmann J et al. (2010) Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards. J Pediatr 156:427–432

    Article  PubMed  CAS  Google Scholar 

  15. Fowler B, Borresen AL, Boman N (1982) Prenatal diagnosis of homocystinuria. Lancet 2:875

    Article  PubMed  CAS  Google Scholar 

  16. Kozich V, Kraus E, de Franchis R et al. (1995) Hyperhomocysteinemia in premature arterial disease: examination of cystathionine beta-synthase alleles at the molecular level. Hum Mol Genet 4:623–629

    Article  PubMed  CAS  Google Scholar 

  17. Yaghmai R, Kashani AH, Geraghty MT et al. (2002) Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am J Med Genet 108:57–63

    Article  PubMed  Google Scholar 

  18. Yap S, Rushe H, Howard PM, Naughten ER (2001) The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis 24:437–447

    Article  PubMed  CAS  Google Scholar 

  19. Yap S (2003) Classical homocystinuria: vascular risk and its prevention. J Inherit Metab Dis 26:259–265

    Article  PubMed  CAS  Google Scholar 

  20. Majtan T, Liu L, Carpenter JF, Kraus JP (2010) Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes. J Biol Chem 285:15866–15873

    Article  PubMed  CAS  Google Scholar 

  21. Kopecká J, Krijt J, Raková K, Kožich V (2010) Restoring assembly and activity of cystathionine beta-synthase mutants by ligands and chemical chaperones. J Inherit Metab Dis 34:39–48

    Article  PubMed  Google Scholar 

  22. Singh LR, Gupta S, Honig NH, Kraus JP, Kruger WD (2010) Activation of mutant enzyme function in vivo by proteasome inhibitors and treatments that induce Hsp70. PLoS Genet 2010 6:e1000807

    Article  PubMed  Google Scholar 

  23. Mudd SH, Jenden DJ, Capdevila A et al. (2000) Isolated hypermethioninemia: measurements of S-adenosylmethionine and choline. Metabolism 49:1542–1547

    Article  PubMed  CAS  Google Scholar 

  24. Barić I (2009) Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis 32:459–471

    Article  PubMed  Google Scholar 

  25. Kim SZ, Santamaria E, Jeong TE et al. (2002) Methionine adenosyltransferase I/III deficiency: two Korean compound heterozygous siblings with a novel mutation. J Inherit Metab Dis 25:661–671

    Article  PubMed  CAS  Google Scholar 

  26. Chamberlin ME, Ubagai T, Mudd SH et al. (1997) Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. Am J Hum Genet 60:540–546

    PubMed  CAS  Google Scholar 

  27. Linnebank M, Lagler F, Muntau AC et al. (2005) Methionine adenosyltransferase (MAT) I/III deficiency with concurrent hyperhomocysteinaemia: two novel cases. J Inherit Metab Dis 28:1167–1168

    Article  PubMed  CAS  Google Scholar 

  28. Chamberlin ME, Ubagai T, Mudd SH et al. (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 98:1021–1027

    Article  PubMed  CAS  Google Scholar 

  29. Hazelwood S, Barnardini I, Shotelersuk V et al. (1998) Normal brain myelination in a patient homozygous for a mutation that encodes a severely truncated methionine adenosyltransferase I/III. Am J Med Genet 75:395–400

    Article  PubMed  CAS  Google Scholar 

  30. Mudd SH, Tangerman A, Stabler SP et al. (2003) Maternal methionine adenosyltransferase I/III deficiency: reproductive outcomes in a woman with four pregnancies. J Inherit Metab Dis 26:443–458

    Article  PubMed  CAS  Google Scholar 

  31. Mudd SH, Cerone R, Schiaffino MC et al. (2001) Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia. J Inherit Metab Dis 24:448–464

    Article  PubMed  CAS  Google Scholar 

  32. Augoustides-Savvopoulou P, Luka Z, Karyda S et al. (2003) Glycine N-methyltransferase deficiency: a new patient with a novel mutation. J Inherit Metab Dis 26:745–759

    Article  PubMed  CAS  Google Scholar 

  33. Luka Z, Cerone R, Phillips JA 3rd et al. (2002) Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet 110:68–74

    Article  PubMed  CAS  Google Scholar 

  34. Liu SP, Li YS, Chen YJ et al. (2007) Glycine N-methyltransferase-/-mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46:1413–1425

    Article  PubMed  CAS  Google Scholar 

  35. Baric I, Fumic K, Glenn B et al. (2004) S-Adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Natl Acad Sci USA 101:4234–4239

    Article  PubMed  CAS  Google Scholar 

  36. Kraus JP, Hasek J, Kozich V et al. (2009) Cystathionine gammalyase: clinical, metabolic, genetic, and structural studies. Mol Genet Metab 97:250–259

    Article  PubMed  CAS  Google Scholar 

  37. Ishii I, Akahoshi N, Yamada H et al. (2010) Cystathionine {gamma}-lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem 285:26358–26368

    Article  PubMed  CAS  Google Scholar 

  38. Lu Y, Odowd BF, Orrego H, Israel Y (1992) Cloning and nucleotide sequence of human liver cDNA encoding for cystathionine gamma-lyase. Biochem Biophys Res Commun 189:749–758

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Hegele RA (2003) Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine γ-lyase (CTH). Hum Genet 112:404–408

    PubMed  CAS  Google Scholar 

  40. Fowler B (1982) Transsulphuration and methylation of homocysteine in control and mutant human fibroblasts. Biochim Biophys Acta 721:201–207

    Article  PubMed  CAS  Google Scholar 

  41. Tan WH, Eichler FS, Hoda S et al. (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766

    Article  PubMed  Google Scholar 

  42. Rupar CA, Gillett J, Gordon BA et al. (1996) Isolated sulfite oxidase deficiency. Neuropediatrics 27:299–304

    Article  PubMed  CAS  Google Scholar 

  43. Garrett RM, Johnson JL, Graf TN et al. (1998) Human sulfite oxidase Rl60Q: identification of the mutation in a sulfite oxidasedeficient patient and expression of the mutant enzyme. Proc Natl Acad Sci USA 95:6394–6398

    Article  PubMed  CAS  Google Scholar 

  44. Johnson JL, Coyne KE, Garrett RM et al. (2002) Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients. Hum Mutat 20:74

    Article  PubMed  Google Scholar 

  45. Sass JO, Nakanishi T, Sato T, Shimizu A (2004) New approaches towards laboratory diagnosis of isolated sulphite oxidase deficiency. Ann Clin Biochem 41:157–159

    Article  PubMed  CAS  Google Scholar 

  46. Touati G, Rusthoven E, Depondt E et al. (2000) Dietary therapy in two patients with a mild form of sulphite oxidase deficiency. Evidence for clinical and biological improvement. J Inherit Metab Dis 23:45–53

    Article  PubMed  CAS  Google Scholar 

  47. Tardy P, Parvy P, Charpentier C et al. (1989) Attempt at therapy in sulphite oxidase deficiency. J Inherit Metab Dis 12:94–95

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andria, G., Fowler, B., Sebastio, G. (2012). Disorders of Sulfur Amino Acid Metabolism. In: Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15720-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15720-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15719-6

  • Online ISBN: 978-3-642-15720-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics