Skip to main content
Log in

Inherited disorders in the conversion of methionine to homocysteine

  • REVIEW
  • Published:
Journal of Inherited Metabolic Disease

Summary

During the last decade much important new information relating to the metabolic pathway from methionine to homocysteine has been gained. Interest has been stimulated by the discovery of two novel disorders, glycine N-methyltransferase deficiency and S-adenosylhomocysteine hydrolase deficiency. Another disorder in this pathway, methionine adenosyltransferase deficiency, has been increasingly detected, thanks to the expansion of newborn screening programmes by tandem mass spectrometry technology. These significant steps allow important insight into the pathogenesis of these three disorders, as well as into the mechanisms of damage to various organs (liver, brain, muscle) and point to the relevance of these disorders for crucial biological processes such as methylation, transsulfuration or carcinogenesis in mammals, the pathogenesis of numerous pathological conditions, in particular those associated with hyperhomocysteinaemia, the action and possible toxicity of some drugs or consequences of nutritional variations. This review summarizes current knowledge of three inherited disorders in this metabolic pathway and draws attention to their much broader significance for human health and understanding of important biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AdoHcy:

S-adenosylhomocysteine

AdoMet:

S-adenosylmethionine

CBS:

cystathionine beta-synthase

CK:

creatine kinase

GNMT:

glycine N-methyltransferase

HCC:

hepatocellular carcinoma

MAT:

methionine adenosyltransferase

PEMT:

phosphatidylethanolamine N-methyltransferase

SAHH:

S-adenosylhomocysteine hydrolase

tHcy:

total homocysteine

TMS:

tandem mass spectrometry

References

  • Augoustides-Savvopoulou P, Luka Z, Karyda S, et al (2003) Glycine N-methyltransferase deficiency: A new patient with a novel mutation. J Inherit Metab Dis 26:745–759. doi:10.1023/B:BOLI.0000009978.17777.33

    Article  PubMed  CAS  Google Scholar 

  • Avila MA, Berasain C, Torres L, et al (2000) Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33:907–914. doi:10.1016/S0168-8278(00)80122-1

    Article  PubMed  CAS  Google Scholar 

  • Barić I, Fumić K, Glenn B, et al (2004) S-adenosylhomocysteine hydrolase deficiency in a human: a genetic disorder of methionine metabolism. Proc Nat Acad Sci U S A 101:4234–4239. doi:10.1073/pnas.0400658101

    Article  Google Scholar 

  • Barić I, Ćuk M, Fumić K, et al (2005) S-Adenosylhomocysteine hydrolase deficiency: a second patient, the younger brother of the index patient, and outcomes during therapy. J Inherit Metab Dis 28:885–902. doi:10.1007/s10545-005-0192-9

    Article  PubMed  Google Scholar 

  • Belužić R, Ćuk M, Pavkov T, et al (2006) A single mutation at Tyr143 of human Sadenosylhomocysteine hydrolase renders the enzyme thermosensitive and affects the oxidation state of bound cofactor nicotinamide-adenine dinucleotide. Biochem J 400:245–253. doi:10.1042/BJ20060749

    Article  PubMed  Google Scholar 

  • Belužić R, Ćuk M, Pavkov T, Barić I, Vugrek O (2008) S-adenosylhomocysteine hydrolase (AdoHcyase) deficiency: Enzymatic capabilities of human AdoHcyase are highly effected by changes to codon 89 and its surrounding residues. Biochem Biophys Res Commun 368:30–36. doi:10.1016/j.bbrc.2008.01.042

    Article  PubMed  Google Scholar 

  • Bilić K, Lovrić M, Petković D, et al (2007) Whole blood S-adenosylhomocysteine—a reliable marker of S-adenosylhomocysteine hydrolase deficiency. J Inherit Metab Dis 30(Supplement 1):30.

    Google Scholar 

  • Bottiglieri T (2002) S-Adenosyl-l-methionine (SAMe): from the bench to the bedside—molecular basis of a pleiotropic molecule. Am J Clin Nutr 76(Supplement):1151S–1157S.

    PubMed  CAS  Google Scholar 

  • Braverman NE, Mudd SH, Barker PB, Pomper MG (2005) Characterisitic MR imaging changes in severe hypermethioninemic states. Am J Neuroradiol 26:2705–2706.

    PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S.

    PubMed  CAS  Google Scholar 

  • Buist NR, Glenn B, Vugrek O, et al (2006) S-Adenosylhomocysteine hydrolase deficiency in a 26-year-old man. J Inherit Metab Dis 29:538–545. doi:10.1007/s10545-006-0240-0

    Article  PubMed  CAS  Google Scholar 

  • Cantoni GL, Richards HH, Chiang PK (1979) Inhibitors of S-adenosylhomocysteine hydrolase and their role in the regulation of biological methylation. In: Usdin E, Borchardt RT, Creveling CR, eds. Transmethylation. New York: Elsevier/North Holland, 155–164.

    Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard J, Chou JY (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 98:1021–1027. doi:10.1172/JCI118862

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Levy H, Chou JY (1997) Dominant inheritance of isolated hypermethioniemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. Am J Hum Genet 60:540–546.

    PubMed  CAS  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, et al (2000) Methionine adenosyltransferase I/III deficiency: Novel mutations and clinical variations. Am J Hum Genet 66:347–355. doi:10.1086/302752

    Article  PubMed  CAS  Google Scholar 

  • Chen YM, Shiu JY, Tzeng SJ, et al (1998) Characterization of glycine-N-methyltransferase gene expression in human hepatocellular carcinoma. Int J Cancer 75:787–793. doi:10.1002/(SICI)1097-0215(19980302)75:5<787::AID-IJC20>3.0.CO;2-2

    Article  PubMed  CAS  Google Scholar 

  • Chiang PK (1998) Biological effects of S-adenosylhomocysteine hydrolase. Pharmacol Ther 77:115–134. doi:10.1016/S0163-7258(97)00089-2

    Article  PubMed  CAS  Google Scholar 

  • Chien YH, Chiang SC, Huang A, Hwu WL (2005) Spectrum of hypermethioninemia in neonatal screening. Early Hum Dev 81:529–533. doi:10.1016/j.earlhumdev.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  • Chou JY (2000) Molecular genetics of hepatic methionine adenosyltransferase deficiency. Pharmacol Ther 85:1–9. doi:10.1016/S0163-7258(99)00047-9

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Banfield K (2001) S-Adenosylmethionine-dependent methyltransferases. In Carmel R, Jacobsen DW, eds. Homocysteine in Health and Disease. Cambridge, UK: Cambridge University Press, 63–78.

    Google Scholar 

  • Cook RJ, Wagner C (1981) Measurement of folate binding protein from rat liver cytosol by radioimmunoassay. Arch Biochem Biophys 208:358–364. doi:10.1016/0003-9861(81)90520-8

    Article  PubMed  CAS  Google Scholar 

  • Couce ML, Bóveda MD, Castineiras DE, et al (2008) Hypermethioninemia due to methionine adenosyltransferase I/III (MAT I/III) deficiency. Diagnosis in an expanded neonatal screening programme. J Inherit Metab Dis 31:467–468.

    Google Scholar 

  • Ćuk M, Lovrić M, Fumić K, et al (2007) The fourth S-adenosylhomocysteine hydrolase deficient patient: Further evidence of congenital myopathy. Clin Chem Lab Med 45:A43.

    Google Scholar 

  • da Costa K, Kwock L, Hooker J, Zeisel SH (2002) Muscle dysfunction occurs in humans depleted of choline. FASEB J 16:A1023.

    Google Scholar 

  • De Clercq E (2002) Highlights in the development of new antiviral agents. Mini. Rev. Med. Chem. 2:163–175. doi:10.2174/1389557024605474

    Article  PubMed  Google Scholar 

  • Devlin AM, Hajipour L, Gholkar A, Fernandes H, Ramesh V, Morris AA (2004) Cerebral edema associated with betaine treatment in classical homocystinuria. J Pediatr 144:545–548. doi:10.1016/j.jpeds.2003.12.041

    Article  PubMed  CAS  Google Scholar 

  • Di Rocco M, Caruso U, Moroni I, et al (1999) 3-Methylglutaconic aciduria and hypermethioninaemia in a child with clinical and neuroradiological findings of Leigh disease. J Inherit Metab Dis 22:593–598. doi:10.1023/A:1005565610613

    Article  PubMed  Google Scholar 

  • Finkelstein JD (2006) Inborn errors of sulfur-containing amino acid metabolism. J Nutr 136:1750S–1754S.

    PubMed  CAS  Google Scholar 

  • Finkelstein JD, Kyle WE, Harris BJ (1974) Methionine metabolism in mammals: regulatory effects of S-adenosylhomocysteine. Arch Biochem Biophys 165:774–779. doi:10.1016/0003-9861(74)90306-3

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JD, Kyle WE, Martin JJ, Pick A-M (1975) Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun 66:81–87. doi:10.1016/S0006-291X(75)80297-X

    Article  PubMed  CAS  Google Scholar 

  • Fontecave M, Atta M, Mulliez E (2004) S-Adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249. doi:10.1016/j.tibs.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  • Fowler B (2008) Homocysteine, S-adenosylmethionine and S-adenosylhomocysteine. In: Blau N, Duran M, Gibson KM eds. Laboratory Guide to the Methods in Biochemical Genetics. Berlin Heidelberg: Springer-Verlag, 91–114.

    Chapter  Google Scholar 

  • Fu W, Dudman NPB, Perry MA, Young K, Wang XL (2000) Interrelations between plasma homocysteine and intracellular S-adenosylhomocysteine. Biochem Biophys Res Commun 271:47–53. doi:10.1006/bbrc.2000.2587

    Article  PubMed  CAS  Google Scholar 

  • Gahl WA, Bernardini I, Finkelstein JD, et al (1988) Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency. J Clin Invest 81:390–397. doi:10.1172/JCI113331

    Article  PubMed  CAS  Google Scholar 

  • Gaull GE, Tallan HH (1974) Methionine adenosyltransferase deficiency: new enzymatic defect associated with hypermethioninemia. Science 186:59–60. doi:10.1126/science.186.4158.59

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SK, Paik WK, Kim S (1988) Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme. J Biol Chem 263:19024–19033.

    PubMed  CAS  Google Scholar 

  • Katz JE, Dlakić M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2:525–540.

    PubMed  CAS  Google Scholar 

  • Heady JE, Kerr SJ (1973) Purification and characterization of glycine N-methyltransferase. J Biol Chem 248:69–72.

    PubMed  CAS  Google Scholar 

  • Kim S, Lim IK, Park GH, Paik WK (1997) Biological methylation of myelin basic protein: enzymology and biological significance. Int J Biochem Cell Biol 29:743–51. doi:10.1016/S1357-2725(97)00009-5

    Article  PubMed  CAS  Google Scholar 

  • Kim SZ, Santamaria E, Jeong TE, et al (2002) Methionine adenosyltransferase deficiency I/III deficiency: two Korean compound heterozygous siblings with a novel mutation. J Inherit Metab Dis 25:661–671.

    Article  PubMed  CAS  Google Scholar 

  • Kloor D, Fumic K, Attig S, et al (2006) Studies of S-adenosylhomocysteine-hydrolase polymorphism in a Croatian population. J Hum Genet 51:21–24. doi:10.1007/s10038-005-0315-z

    Article  PubMed  Google Scholar 

  • Kluijtmans LAJ, Boers GHJ, Stevens EMB, et al (1996) Defective cystathionine β-synthase regulation by S-adenosylmethionine in a partially pyridoxine responsive homocystinuria patient. J Clin Invest 98:285–289. doi:10.1172/JCI118791

    Article  PubMed  CAS  Google Scholar 

  • Linnebank M, Lagler F, Muntau AC, et al (2005) Methionine adenosyltransferase (MAT) I/III deficiency with concurrent hyperhomocysteinemia: Two novel cases. J Inherit Metab Dis 28:1167–1168. doi:10.1007/s10545-005-4497-5

    Article  PubMed  CAS  Google Scholar 

  • Liu SP, Li YS, Chen YJ, et al (2007) Glycine N-methyltransferase µ/µ mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology 46:1413–1425. doi:10.1002/hep.21863

    Article  PubMed  CAS  Google Scholar 

  • Luka Z, Cerone R, Philips III JA, Mudd SH, Wagner C (2002) Mutations in human glycine N-methyltransferase give insights into its role in methionine metabolism. Hum Genet 110:68–74. doi:10.1007/s00439-001-0648-4

    Article  PubMed  CAS  Google Scholar 

  • Luka Z, Capdevila A, Mato JM, Wagner C (2006) A glycine N-methyltransferase knockout mouse model for humans with deficiency of this enzyme. Transgenic Res 15:393–397. doi:10.1007/s11248-006-0008-1

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199. doi:10.1002/hep.22159

    Article  PubMed  Google Scholar 

  • Martins E, Eusebio F, Marcao A, Rocha H, Vilarinho L (2007) Five families with hypermethioniemia associated with the dominantly inherited methionine adenosyltransferase I/III form deficiency. J Inherit Metab Dis 30(Supplement 1):6.

    Google Scholar 

  • Mato JM, Lu SC (2007) Role of S-adenosylmethionine in liver health and injury. Hepatology 45:1306–1312.10.1002/hep.21650

    Article  PubMed  CAS  Google Scholar 

  • Miller MW, Duhl DMJ, Winkes BM, et al (1994) The mouse lethal nonagouti (a x) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene. EMBO J 13:1806–1816.

    PubMed  CAS  Google Scholar 

  • Mudd SH, Poole JR (1975) Labile methyl balances for normal humans on various dietary regimens. Metabolism 24:721–735. doi:10.1016/0026-0495(75)90040-2

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Ebert MH, Scriver CR (1980) Labile methyl group balances in the human: the role of sarcosin. Metabolism 29:707–720. doi:10.1016/0026-0495(80)90192-4

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Levy HL, Tangerman A, et al (1995) Isolated persistent hypermethioninemia. Am J Hum Genet 57:882–892.

    PubMed  CAS  Google Scholar 

  • Mudd SH, Jenden DJ, Capdevilla A, Roch M, Levy HL, Wagner C (2000) Isolated hypermethioninemia: measurements of S-adenosylmethionine and choline. Metabolism 49:1542–1547. doi:10.1053/meta.2000.18521

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Levy HL, Kraus JP (2001a) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds; Childs B, Kinzler KW, Vogelstein B, assoc. eds. The Metabolic and Molecular Bases of Inherited Disease, 8th edn. New York: McGraw-Hill, 2007–2056.

  • Mudd SH, Cerone R, Schiaffino MC, et al (2001b) Glycine N-methyltransferase deficiency: a novel inborn error causing persistent isolated hypermethioninaemia. J Inherit Metab Dis 24:448–464. doi:10.1023/A:1010577512912

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Braverman N, Pomper M, et al (2003) Infantile hypermethioninemia and hyperhomocysteinemia due to high methionine intake: a diagnostic trap. Mol Genet Metab 796–16. doi:10.1016/S1096-7192(03)00066-0

    Article  Google Scholar 

  • Mudd SH, Brosnan JT, Brosnan ME, et al (2007) Methylbalance and transmethylation fluxes in humans. Am J Clin Nutr 85:19–25.

    PubMed  CAS  Google Scholar 

  • Oliveriusova J, Kery V, Maclean KN, Kraus JP (2002) Deletion mutagenesis of human cystathionine β-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 277:48386–48394. doi:10.1074/jbc.M207087200

    Article  PubMed  CAS  Google Scholar 

  • Pollitt RJ, Green A, Smith R (1985) Excessive excretion of beta-alanine and of 3-hydroxypropionic, R- and S-3-aminoisobutyric, R- and S-3-hydroxyisobutyric and S-2-(hydroxymethyl)butyric acids probably due to a defect in the metabolism of the corresponding malonic semialdehydes. J Inherit Metab Dis 8:75–79. doi:10.1007/BF01801669

    Article  PubMed  CAS  Google Scholar 

  • Prigge ST, Chiang PK (2001) SAdenosylhomocysteine hydrolase. In Carmel R, Jacobsen DW, eds. Homocysteine in Health and Disease. Cambridge, UK: Cambridge University Press, 79–91.

    Google Scholar 

  • Prudova A, Bauman Z, Braun A, Vitvvitsky V, Lu SC, Banerjee R (2006) S-adenosylmethionine stabilizes cystathionine β-synthase and modulates redox capacity. Proc Nat Acad Sci U S A 103:6489–6494. doi:10.1073/pnas.0509531103

    Article  CAS  Google Scholar 

  • Stabler SP, Steegborn C, Wahl MC, et al (2002) Elevated plasma total homocysteine in severe methionine adenosyltransferase I/III deficiency. Metabolism 51:981–988. doi:10.1053/meta.2002.34017

    Article  PubMed  CAS  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10.

    PubMed  CAS  Google Scholar 

  • Stöckler S, Schutz PW, Salomons GS (2007) Cerebral creatine deficiency syndromes: clinical aspects, treatment and pathophysiology. Subcell Biochem 46:149–166. doi:10.1007/978-1-4020-6486-9_8

    Article  PubMed  Google Scholar 

  • Surtees R, Leonard J, Austin S (1991) Association of demyelination with deficiency of cerebrospinal-fluid S-adenosylmethionine in inborn errors of methyl-transfer pathway. Lancet 338:1550–1554. doi:10.1016/0140-6736(91)92373-A

    Article  PubMed  CAS  Google Scholar 

  • Tada H, Takanashi J, Barkovich J, Yamamoto S, Kohno Y (2004) Reversible white matter lesion in methionine adenosyltransferase I/III deficiency. Am J Neuroradiol 25:1843–1845.

    PubMed  Google Scholar 

  • ten Hoedt AE, van Kempen AA, Boelen A, et al (2007) High incidence of hypermethioninaemia in a single neonatal intensive care unit detected by a newly introduced neonatal screening programme. J Inherit Metab Dis 30:978. doi:10.1007/s10545-007-0701-0

    Article  PubMed  CAS  Google Scholar 

  • Tseng TL, Shih YP, Huang YC (2003) Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res 63:647–654.

    PubMed  CAS  Google Scholar 

  • Vugrek O, Belužić R, Nakić N, Mudd SH (2009) S-Adenosylhomocysteine hydrolase (AHCY) deficiency: two novel mutations with lethal outcome. Hum Mutat 30:E555–E565. doi:10.1002/humu.20985

    Article  PubMed  Google Scholar 

  • Waite KA, Cabillo NR, Vance DE (2002) Choline deficiency-induced liver damage is reversible in Pemt –/– mice. J Nutr 132:68–71.

    PubMed  CAS  Google Scholar 

  • Walkey CJ, Yu L, Agellon LB, Vance DE (1998) Biochemical and evolutionary significance of phospholipid methylation. J Biol Chem 273:27043–27046. doi:10.1074/jbc.273.42.27043

    Article  PubMed  CAS  Google Scholar 

  • Yaghmai R, Kashani AH, Geraghty MT, et al (2002) Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am J Med Genet 108:57–63. doi:10.1002/ajmg.10186

    Article  PubMed  Google Scholar 

  • Yeo EJ, Wagner C (1994) Tissue binding of glycine N-methyltransferase, a major folate-binding protein of liver. Proc Natl Acad Sci U S A 91:210–214. doi:10.1073/pnas.91.1.210

    Article  PubMed  CAS  Google Scholar 

  • Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosyhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 108-1081870-1885 of the Ministry of Science, Education and Sport of Republic of Croatia. Brian Fowler is gratefully acknowledged for his critical and supporting review of the manuscript and S. Harvey Mudd for his great teaching and motivating contribution to the author’s work in this field. The author is grateful to all his colleagues for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Barić.

Additional information

Communicating editor: Brian Fowler

Competing interests: None declared

References to electronic databases: OMIM catalogue: http://www.ncbi.nlm.nih.gov/omim/; Enzyme Commission numbers: http://www.chem.qmul.ac.uk/iubmb/enzyme/. MAT I/III deficiency: OMIM 250850; Methionine adenosyltransferase (MAT) EC 2.5.1.6. GNMTdeficiency: OMIM 606664. Glycine N-methyltransferase (GNMT): EC 2.1.1.20. AdoHcy hydrolase deficiency: OMIM 180960. S-Adenosylhomocysteine hydrolase: EC 3.3.1.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barić, I. Inherited disorders in the conversion of methionine to homocysteine. J Inherit Metab Dis 32, 459–471 (2009). https://doi.org/10.1007/s10545-009-1146-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-009-1146-4

Keywords

Navigation