Skip to main content

Direct and Indirect Neural Identification and Control of a Continuous Bioprocess via Marquardt Learning

  • Chapter
Soft Computing for Intelligent Control and Mobile Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 318))

Abstract

This paper applied a new Kalman Filter Recurrent Neural Network (KFRNN) topology and a recursive Levenberg-Marquardt (L-M) learning algorithm capable to estimate parameters and states of highly nonlinear unknown plant in noisy environment. The proposed KFRNN identifier, learned by the Backpropagation and L-M learning algorithm, was incorporated in a direct and indirect adaptive neural control schemes. The proposed control schemes were applied for real-time recurrent neural identification and control of a continuous stirred tank bioreactor model, where fast convergence, noise filtering and low mean squared error of reference tracking were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Narendra, K.S., Parthasarathy, K.: Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transactions on Neural Networks 1(1), 4–27 (1990)

    Article  Google Scholar 

  2. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural Network for Control Systems (A survey). Automatica 28, 1083–1112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Haykin, S.: Neural Networks, a Comprehensive Foundation, 2nd edn., Section 2.13, pp. 84–89, Section 4.13, pp. 208-213. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  4. Chen, S., Billings, S.A.: Neural Networks for Nonlinear Dynamics System Modeling and Identification. International Journal of Control 56, 319–346 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boskovic, J.D., Narendra, K.S.: Comparison of Linear, Nonlinear and Neural – Network - Based Adaptive Controllers for a Class of Fed - Batch Fermentation Processes. Automatica 31, 817–840 (1995)

    Article  MathSciNet  Google Scholar 

  6. Ku, C.C., Lee, K.Y.: Diagonal Recurrent Neural Networks for Dynamic Systems Control. IEEE Transactions on Neural Networks 6(1), 144–156 (1995)

    Article  Google Scholar 

  7. Jin, L., Gupta, M.: Stable Dynamic Backpropagation Learning in Recurrent Neural Networks. IEEE Transactions on Neural Networks 10, 1321–1334 (1999)

    Article  Google Scholar 

  8. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition. Springer, Germany (2005)

    MATH  Google Scholar 

  9. Mastorocostas, P.A., Theocharis, J.B.: A Stable Learning Algorithm for Block - Diagonal Recurrent Neural Networks: Application to the Analysis of Lung Sounds. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 36(2), 242–254 (2006)

    Article  Google Scholar 

  10. Kazemy, A., Hosseini, S.A., Farrokhi, M.: Second Order Diagonal Recurrent Neural Network. In: Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE, Vigo, Spain, June 2007, pp. 251–256. IEEE Inc., New York (2007)

    Google Scholar 

  11. Sage, A.P.: Optimum Systems Control. In: Library of Congress Catalog Number, pp. 68–20862. Prentice-Hall Inc., Englewood Cliffs (1968)

    Google Scholar 

  12. Baruch, I.S., Mariaca-Gaspar, C.R.: A Levenberg-Marquardt Learning Applied for Recurrent Neural Identification and Control of a Wastewater Treatment Bioprocess. International Journal of Intelligent Systems 24, 1094–1114 (2009)

    Article  MATH  Google Scholar 

  13. Baruch, I.S., Mariaca-Gaspar, C.R., Barrera-Cortes, J.: Recurrent Neural Network Iden-tification and Adaptive Neural Control of Hydrocarbon Biodegradation Processes. In: Hu, X., Balasubramaniam, P. (eds.) Recurrent Neural Networks, Ch. 4, pp. 61–88. I-Tech Education and Publishing KG, Vienna (2008) ISBN 978-953-7619-08-4

    Google Scholar 

  14. Mariaca Gaspar, C.R.: Topologies, Learning and Stability of Hybrid Neural Networks, Applied for Nonlinear Biotechnological Processes, Ph. D. Thesis (in spanish), Baruch, I.S., Martinez-Garcia, J.C (thesis directors), Department of Automatic Control, CINVESTAV-IPN, Mexico City, 3 (July 2009)

    Google Scholar 

  15. Ngia, L.S., Sjöberg, J.: Efficient Training of Neural Nets for Nonlinear Adaptive Filter-ing Using a Recursive Levenberg Marquardt Algorithm. IEEE Trans. on Signal Processing 48, 1915–1927 (2000)

    Article  MATH  Google Scholar 

  16. Zhang, T., Guay, M.: Adaptive Nonlinear Control of Continuously Stirred Tank Reactor Systems. In: Proceedings of the American Control Conference, Arlington, June 25-27, pp. 1274–1279 (2001)

    Google Scholar 

  17. Lightbody, G., Irwin, G.W.: Nonlinear Control Structures Based on Embedded Neural System Models. IEEE Trans. on Neural Networks 8, 553–557 (1997)

    Article  Google Scholar 

  18. Wan, E., Beaufays, F.: Diagrammatic Method for Deriving and Relating Temporal Neural Network Algorithms. Neural Computations 8, 182–201 (1996)

    Article  Google Scholar 

  19. Young, K.D., Utkin, V.I., Ozguner, U.: A Control Engineer’s Guide to Sliding Mode Control. IEEE Transactions on Control Systems Technology 7(3), 328–342 (1999)

    Article  Google Scholar 

  20. Levent, A.: Higher Order Sliding Modes, Differentiation and Output Feedback Control. Fridman, L.M.(guest ed.) International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday 9/10 (June 15-July 10, 2003) ISSN 0020-7179

    Google Scholar 

  21. Eduards, C., Spurgeon, S.K., Hebden, R.G.: On the Design of Sliding Mode Output Feedback Controllers. Fridman, L.M.(guest ed.) International Journal of Control, Special Issue Dedicated to Vadim Utkin on the Occasion of his 65th Birthday 76(9/10), 893–905 (June 15-July10, 2003) ISSN 0020-7179

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baruch, I., Mariaca-Gaspar, CR., Barrera-Cortes, J., Castillo, O. (2010). Direct and Indirect Neural Identification and Control of a Continuous Bioprocess via Marquardt Learning. In: Castillo, O., Kacprzyk, J., Pedrycz, W. (eds) Soft Computing for Intelligent Control and Mobile Robotics. Studies in Computational Intelligence, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15534-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15534-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15533-8

  • Online ISBN: 978-3-642-15534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics