Skip to main content

Example-Guided Abstraction Simplification

  • Conference paper
Automata, Languages and Programming (ICALP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6199))

Included in the following conference series:

Abstract

In static analysis, approximation is typically encoded by abstract domains, providing systematic guidelines for specifying approximate semantic functions and precision assessments. However, it may well happen that an abstract domain contains redundant information for the specific purpose of approximating a given semantic function modeling some behavior of a system. This paper introduces Example-Guided Abstraction Simplification (EGAS), a methodology for simplifying abstract domains, i.e. removing abstract values from them, in a maximal way while retaining exactly the same approximate behavior of the system under analysis. We show that, in abstract model checking and predicate abstraction, EGAS provides a simplification paradigm of the abstract state space that is guided by examples, meaning that it preserves spuriousness of examples (i.e., abstract paths). In particular, we show how EGAS can be integrated with the well-known CEGAR (CounterExample-Guided Abstraction Refinement) methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  2. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs. Int. J. Softw. Tools Technol. Transfer 5, 49–58 (2003)

    Article  Google Scholar 

  3. Ball, T., Rajamani, S.K.: The SLAM Project: Debugging system software via static analysis. In: Proc. 29th ACM POPL, pp. 1–3 (2002)

    Google Scholar 

  4. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

    Article  MathSciNet  Google Scholar 

  6. Clarke, E.M., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge (1999)

    Google Scholar 

  8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. 4th ACM POPL, pp. 238–252 (1977)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. 6th ACM POPL, pp. 269–282 (1979)

    Google Scholar 

  10. Cousot, P., Ganty, P., Raskin, J.-F.: Fixpoint-guided abstraction refinements. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 333–348. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design. ACM Comp. Surveys 28(2), 333–336 (1996)

    Article  Google Scholar 

  13. Giacobazzi, R., Mastroeni, I.: Transforming abstract interpretations by abstract interpretation (Invited Lecture). In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in abstract model checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781. Springer, Heidelberg (1997)

    Google Scholar 

  16. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci. Comp. Program. 32, 177–210 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. ACM 47(2), 361–416 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

    Google Scholar 

  19. Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpretation. J. Logic and Computation 17(1), 157–197 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giacobazzi, R., Ranzato, F. (2010). Example-Guided Abstraction Simplification. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds) Automata, Languages and Programming. ICALP 2010. Lecture Notes in Computer Science, vol 6199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14162-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14162-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14161-4

  • Online ISBN: 978-3-642-14162-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics