Skip to main content

Handfunktionsstörungen: Assessment und Management

  • Chapter
NeuroRehabilitation
  • 9971 Accesses

Zusammenfassung

Handfunktionsstörungen umfassen eine Vielzahl unterschiedlicher Defizite beim Einsatz der Hände. Diese reichen von Einschränkungen geschickter Präzisionsleistungen bis zur Unfähigkeit, die Hand für einfache Halteaufgaben zu benutzen. Handfunktionsstörungen sind eine typische Folge vieler Erkrankungen des zentralen und peripheren Nervensystems. In der Diagnostik erlauben Bewegungsanalysen neue Einblicke in die individuellen Charakteristika einer Störung. Für die Behandlung existieren neben etablierten Konzepten eine Reihe neuer Ansätze, deren Wirksamkeit momentan intensiv evaluiert wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ada L, Canning CG, Carr JH, Kilbreath SL, Shepherd RB. Task-specific training of reaching and manipulation. In: Bennett KMB, Castiello U (Hrsg). Insights into the Reach to Grasp Movement. Amsterdam: Elsevier Science Pub; 1994. S. 239–265.

    Google Scholar 

  • Ada L, Dorsch S, Canning CG. Strengthening interventions increase strength and improve activity after stroke: a systematic review. Aust.J Physiother 2006; 52:241–248.

    Article  Google Scholar 

  • Affolter F. Wahrnehmung, Wirklichkeit und Sprache. Villingen- Schwenningen: Neckar; 2006.

    Google Scholar 

  • Allard P, Stokes IAF, Blanchi JP. Three-dimensional analysis of human movement. Champaign, IL: Human Kinetics; 1995.

    Google Scholar 

  • Altschuler EL, Wisdom SB, Stone L, Foster C, Galasko D, Llewellyn DM, Ramachandran VS. Rehabilitation of hemiparesis after stroke with a mirror. Lancet 1999;353:2035–2036.

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Snyder LH, Bradley DC, Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 1997;20:303–330.

    Article  PubMed  CAS  Google Scholar 

  • Armand J, Olivier E, Edgley SA, Lemon RN. The structure and function of the developing corticospinal tract: Some key issues. In: Wing AM, Haggard P, Flanagan JR (Hrsg). Hand and Brain. San Diego: Academic Press; 1996. S. 125–145.

    Chapter  Google Scholar 

  • Bauder H, Taub E, Miltner WH. Behandlung motorischer Störungen nach Schlaganfall. Die Taubsche Bewegungsinduktionstherapie. Göttingen: Hogrefe; 2001.

    Google Scholar 

  • Baur B, Schenk T, Fürholzer W, Scheuerecker J, Marquardt C, Kerkhoff G, Hermsdörfer J. Modified pen grip in the treatment of writer's cramp. Hum Mov Sci 2006;25:464–473.

    Article  PubMed  Google Scholar 

  • Bhatt E, Nagpal A, Greer KH, Grunewald TK, Steele JL, Wiemiller JW, Lewis SM, Carey JR. Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Exp Brain Res 2007.

    Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ. Human anterior intraparietal area subserves prehension: A combined lesion and fMRI activation study. Neurology 1998;50: 1253–1259.

    PubMed  CAS  Google Scholar 

  • Binkofski F, Ertelt D, Dettmers C, Buccino G. Das Spiegelneuronensystem und seine Rolle in der neurologischen Rehabilitation. Neurol Rehabil 2004;10:113–120.

    Google Scholar 

  • Bjorkman A, Rosen B, van Westen D, Larsson EM, Lundborg G. Acute improvement of contralateral hand function after deafferentation. NeuroReport 2004;15:1861–1865.

    Article  PubMed  Google Scholar 

  • Bjorkman A, Rosen B, Lundborg G. Acute improvement of hand sensibility after selective ipsilateral cutaneous forearm anaesthesia. Europ J Neurosci 2004;20:2733–2736.

    Article  Google Scholar 

  • Boissy P, Bourbonnais D, Carlotti MM, Gravel D, Arsenault BA. Maximal grip force in chronic stroke subjects and its relationship to global upper extremity function. Clin Rehabil 1999;13: 354–362.

    Article  PubMed  CAS  Google Scholar 

  • Bolton DA, Cauraugh JH, Hausenblas HA. Electromyogram-triggered neuromuscular stimulation and stroke motor recovery of arm/ hand functions: a meta-analysis. J Neurol Sci 2004;223:121–127.

    Article  PubMed  Google Scholar 

  • Bonifer NM, Anderson KM, Arciniegas DB. Constraint-Induced Movement therapy after stroke: efficacy for patients with minimal upper- extremity motor ability. Arch Phys Med Rehabil 2005;86:1867–1873.

    Article  PubMed  Google Scholar 

  • Bötzel K, Krack P. Deep brain stimulation for movement disorders. Neurological Disorders: Course and Treatment. Elsevier Science; 2003. S. 1099–1111.

    Google Scholar 

  • Bourbonnais D, Bilodeau S, Cross P, Lemay JF, Caron S, Goyette M. A motor reeducation program aimed to improve strength and coordination of the upper-limb of a hemiparetic subject. Neurorehabil 1997;9:3–15.

    Article  Google Scholar 

  • Broeren J, Dixon M, Sunnerhagen KS, Rydmark M. Rehabilitation after stroke using virtual reality, haptics (force feedback) and telemedicine. Stud Health Technol Inform 2006;124:51–56.

    PubMed  Google Scholar 

  • Broeren J, Rydmark M, Bjorkdahl A, Sunnerhagen KS. Assessment and training in a 3-dimensional virtual environment with haptics: A report on 5 cases of motor rehabilitation in the chronic stage after stroke. Neurorehabil Neural Repair 2007;21:180–189.

    Article  PubMed  Google Scholar 

  • Bütefisch C, Hummelsheim H, Denzler P, Mauritz KH. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 1995;130:59–68.

    Article  PubMed  Google Scholar 

  • Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, Lewis SM. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair 2007;21:216–232.

    Article  PubMed  Google Scholar 

  • Carey LM, Matyas TA. Training of somatosensory discrimination after stroke: facilitation of stimulus generalization. Am J Phys Med Rehabil 2005;84:428–442.

    Article  PubMed  Google Scholar 

  • Cauraugh JH, Kim S. Two coupled motor recovery protocols are better than one: electromyogram-triggered neuromuscular stimulation and bilateral movements. Stroke 2002;33:1589–1594.

    Article  PubMed  Google Scholar 

  • Cauraugh JH, Light K, Kim S, Thigpen M, Behrman A. Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke 2000;31:1360–1364.

    Article  PubMed  CAS  Google Scholar 

  • Cirstea CM, Ptito A, Levin MF. Feedback and cognition in arm motor skill reacquisition after stroke. Stroke 2006;37:1237–1242.

    Article  PubMed  CAS  Google Scholar 

  • Conforto AB, Cohen LG, dos Santos RL, Scaff M, Marie SK. Effects of somatosensory stimulation on motor function in chronic cortico- subcortical strokes. J Neurol 2007;254:333–339.

    Article  PubMed  Google Scholar 

  • Conforto AB, Kaelin-Lang A, Cohen LG. Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 2002;51:122–125.

    Article  PubMed  Google Scholar 

  • Conrad B, Ceballos-Baumann AO. Bewegungsstörungen in der Neurologie. Richtig erkennen und behandeln. Stuttgart, New York: Thieme; 2005.

    Google Scholar 

  • Crosbie JH, McDonough SM, Gilmore DH, Wiggam MI. The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke: a pilot study. Clin Rehabil 2004;18:60–68.

    Article  PubMed  Google Scholar 

  • Crow JL, Lincoln NB, Nouri FM, De Weerdt W. The effectiveness of EMG biofeedback in the treatment of arm function after stroke. Int Disabil Stud 1989;11:155–160.

    PubMed  CAS  Google Scholar 

  • Cutkosky MR, Howe RD. Human grasp choice and robotic grasp analysis. In: Iberall T, Venkataraman ST (Hrsg). Dextrous robot hands. New York, Berlin, Heidelberg: Springer; 1990. S. 5–31.

    Google Scholar 

  • Davies PM. Hemiplegie. Berlin: Springer; 1992.

    Google Scholar 

  • de Kroon JR, van der Lee JH, IJzerman MJ, Lankhorst GJ. Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review. Clin Rehabil 2002;16:350–360.

    Article  PubMed  Google Scholar 

  • Delevoye-Turrell Y, Wing A. Action and motor skills. In: Lamberts K, Goldstone R (Hrsg). Handbook of Cognition. Thousand Oaks, CA: Sage; 2004.

    Google Scholar 

  • Della Sala S, Marchetti C. Anarchic hand. In: Freund HJ, Jeannerod M, Hallett M, Leiguarda R (Hrsg). Higher-order motor disorders. Oxford: Oxdorf University Press; 2005. S. 291–301.

    Google Scholar 

  • Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 2000;4:423–431.

    Article  PubMed  Google Scholar 

  • Dettmers C, Liepert J, Hamzei F, Binkofski F, Weiller C. Läsion im ventrolateralen prämotorischen Kortex beeinträchtigt die Greiffunktion – A lesion in the ventrolateral premotor cortex causes difficulties in grasping. Aktuelle Neurologie 2003;30:247–255.

    Article  Google Scholar 

  • Dettmers C, Teske U, Hamzei F, Uswatte G, Taub E, Weiller C. Distributed form of constraint-induced movement therapy improves functional outcome and quality of life after stroke. Arch Phys Med Rehabil 2005;86:204–209.

    Article  PubMed  Google Scholar 

  • Deutsch JE, Lewis JA, Burdea G. Technical and patient performance using a virtual reality-integrated telerehabilitation system: preliminary finding. IEEE Trans Neural Syst Rehabil Eng 2007;15:30–35.

    Article  PubMed  Google Scholar 

  • Dijkerman HC, Letswaart M, Johnston M, Macwalter RS. Does motor imagery training improve hand function in chronic stroke patients? A pilot study. Clin Rehabil 2004;18:538–549.

    Article  PubMed  CAS  Google Scholar 

  • Dimitrijevic MM, Soroker N. Mesh-glove. 2. Modulation of residual upper limb motor control after stroke with whole-hand electric stimulation. Scand J Rehabil Med 1994;26:187–190.

    PubMed  CAS  Google Scholar 

  • Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A, Binkofski F, Buccino G. Action observation has a positive impact on rehabilitation of motor deficits after stroke. NeuroImage 2007;36:T164–T173.

    Article  PubMed  Google Scholar 

  • Feeney DM, De Smet AM, Rai S. Noradrenergic modulation of hemiplegia: facilitation and maintenance of recovery. Restor Neurol Neurosci 2004;22:175–190.

    PubMed  Google Scholar 

  • Fellows SJ, Kronenburger M, Allert N, Coenen VA, Fromm C, Noth J, Weiss PH. The effect of subthalamic nucleus deep brain stimulation on precision grip abnormalities in Parkinson's disease. Parkinsonism Relat Disord 2006;12:149–154.

    Article  PubMed  Google Scholar 

  • Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003;61:1604–1607.

    PubMed  CAS  Google Scholar 

  • Flanagan JR, Johansson RS. Hand movements. Encyclopedia of the human brain. Elsevier Science; 2002. S. 399–414.

    Google Scholar 

  • Flanagan JR, Wing AM. The role of internal models in motion planning and control – evidence from grip force adjustments during movements of hand- held loads. J Neurosci 1997;17:1519–1528.

    PubMed  CAS  Google Scholar 

  • Floel A, Cohen LG. Translational studies in neurorehabilitation: from bench to bedside. Cogn Behav Neurol 2006;19:1–10.

    Article  PubMed  Google Scholar 

  • Floel A, Nagorsen U, Werhahn KJ, Ravindran S, Birbaumer N, Knecht S, Cohen LG. Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol 2004;56:206–212.

    Article  PubMed  Google Scholar 

  • Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. NeuroReport 2005;16:1551–1555.

    Article  PubMed  Google Scholar 

  • Freund E. Die Wirkung eines apparativen Tasttrainings auf die Feinmotorik der Hand – Evaluation und Therape. In: Minkwitz K, Scholz E (Hrsg). Standardisierte Therapieverfahren und Grundlagen des Lernens in der Neurologie. Idstein: Schulz-Kirchner; 2005.

    Google Scholar 

  • Freund HJ, Jeannerod M, Hallett M, Leiguarda R. High-Order Motor disorders. from neuroanatomy and neurobiology to Clinical Neurology. Oxford: Oxford University Press; 2005.

    Google Scholar 

  • Friedhoff M, Schieberle D. Praxis des Bobath-Konzepts. Grundlagen – Handlings – Fallbeispiele. Stuttgart: Thieme; 2007.

    Google Scholar 

  • Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Stegling S. The post-stroke hemiplegic patient. I. A method of evaluation of physical performance. Scand J Rehabil Med 1975;7:13–31.

    PubMed  CAS  Google Scholar 

  • Fürholzer W, Baur B, Steidle B, Hermsdörfer J. Training zum Abbau von motorischen Fehlstrategien bei Schreibstörungen. In: Minkwitz K, Scholz E (Hrsg). Standardisierte Therapieverfahren und Grundlagen des Lernens in der Neurologie. Idstein: Schulz-Kirchner; 2005.

    Google Scholar 

  • Geisseler T. Halbseitenlähmung. Alltag ist Therapie - Therapie ist Alltag. Heidelberg: Springer; 2005.

    Google Scholar 

  • George S. Praxishandbuch COPM. Darstellung des COPM und Entwicklung eines Praxisleitfadens zur Durchführung des Interviews in der neurologischen Klinik. Idstein: Schulz-Kirchner; 2002.

    Google Scholar 

  • Glanz M, Klawansky S, Stason W, Berkey C, Shah N, Phan H, Chalmers TC. Biofeedback therapy in poststroke rehabilitation: a metaanalysis of the randomized controlled trials. Arch Phys Med Rehabil 1995;76:508–515.

    Article  PubMed  CAS  Google Scholar 

  • Glover S. Separate visual representations in the planning and control of action. Behav Brain Sci 2004;27:3–24.

    PubMed  Google Scholar 

  • Goldenberg G, Hermsdörfer J, Glindemann R, Rorden C, Karnath HO. Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 2007;17:2769–2776.

    Article  PubMed  Google Scholar 

  • Goldenberg G, Karnath HO. The neural basis of imitation is body part specific. J Neurosci 2006;26:6282–6287.

    Article  PubMed  CAS  Google Scholar 

  • Gordon AM, Westling G, Cole KJ, Johansson RS. Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol. 1993;69:1789–1796.

    PubMed  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C. Impairments of reaching movements in patients without proprioception. 1. Spatial errors. J Neurophysiol 1995;73:347–360.

    PubMed  CAS  Google Scholar 

  • Hamzei F, Liepert J, Dettmers C, Weiller C, Rijntjes M. Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS. NeuroImage 2006;31:710–720.

    Article  PubMed  Google Scholar 

  • Harth A, Vetter WR. Grip and pinch strength among selected adult occupational groups. Occup Ther Intern 1994;1:13–28.

    Google Scholar 

  • Hermsdörfer J. Bewegungsmessung zur Analyse von Handfunktionen. Vorschlag einer standardisierten Untersuchung. EKN - Beiträge für die Rehabilitation. Norderstedt: Books On Demand; 2002.

    Google Scholar 

  • Hermsdörfer J, Goldenberg G. Ipsilesional deficits during fast diadochokinetic hand movements following ipsilateral brain damage. Neuropsychologia 2002;40:2100–2115.

    Article  PubMed  Google Scholar 

  • Hermsdörfer J, Hagl E, Nowak DA. Deficits of anticipatory grip force control after damage to peripheral and central sensorimotor systems. Hum Mov Sci 2004;23:643–662.

    Article  PubMed  Google Scholar 

  • Hermsdörfer J, Mai N. Disturbed grip force control following cerebral lesions. J Hand Ther 1996;9:33–40.

    PubMed  Google Scholar 

  • Hermsdörfer J, Mai N, Rudroff G, Münßinger M. Untersuchung zerebraler Handfunktionsstörungen. Ein Vorschlag zur standardisierten Durchführung. Dortmund: Borgmann; 1994.

    Google Scholar 

  • Hermsdörfer J, Marquardt C, Heiss J. Evaluation eines feedbackbasierten Trainings zerebraler Handfunktionsstörungen mittels kinematischer Bewegungsanalyse. Phys Med Rehab Kuror 2004;4:187–194.

    Article  Google Scholar 

  • Hesse S, Werner C, Bardeleben A. Der schwer betroffene Arm ohne distale Willküraktivität - ein «Sorgenkind” der Rehabilitation nach Schlaganfall?! Neurol Rehabil 2004;10:123–129.

    Google Scholar 

  • Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 2005;36:1960–1966.

    Article  PubMed  CAS  Google Scholar 

  • Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 2005;128:490–499.

    Article  PubMed  Google Scholar 

  • Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006;5:708–712.

    Article  PubMed  Google Scholar 

  • Hummel FC, Voller B, Celnik P, Floel A, Giraux P, Gerloff C, Cohen LG. Effects of brain polarization on reaction times and pinch force in chronic stroke. BMC Neurosci 2006;7:73.

    Article  PubMed  Google Scholar 

  • Hummelsheim H. Die Rehabilitation der zentral paretischen Hand: Bewegungswiederholung und sensomotorische Kopplung. Neurol Rehabil 1998;4:64–70.

    Google Scholar 

  • Hummelsheim H. Neurologische Rehabilitation. Berlin, Heidelberg: Springer; 1998.

    Google Scholar 

  • Hummelsheim H, Amberger S, Mauritz KH. The influence of EMG initiated electrical muscle stimulation on motor recovery of the centrally paretic hand. Europ J Neurosci 1996;3:245–254.

    CAS  Google Scholar 

  • Hummelsheim H, Maierloth ML, Eickhof C. The functional value of electrical muscle stimulation for the rehabilitation of the hand in stroke patients. Scand J Rehabil Med 1997;29:3–10.

    PubMed  CAS  Google Scholar 

  • Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehabil 1969;50:311–319.

    PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guíc-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 1990;63:82–104.

    PubMed  CAS  Google Scholar 

  • Johansson RS. Sensory control of dexterous manipulation in humans. In: Wing AM, Haggard P, Flanagan JR (Hrsg). Hand and brain. San Diego: Academic Press; 1996. S. 381–414.

    Chapter  Google Scholar 

  • Johansson RS, Westling G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting tasks with precision grip. Exp Brain Res 1988;71:59–71.

    PubMed  CAS  Google Scholar 

  • Jones RD, Donaldson IM, Parkin PJ. Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 1989;112:113–132.

    Article  PubMed  Google Scholar 

  • Kahn LE, Lum PS, Rymer WZ, Reinkensmeyer DJ. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? J Rehabil Res Dev 2006;43:619–630.

    Article  PubMed  Google Scholar 

  • Kopp B, Kunkel A, Flor H, Platz T, Rose U, Mauritz K-H, Gresser K, Mc- Culloch KL, Taub E. The arm motor ability test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Arch Phys Med Rehabil 1997;78:615–620.

    Article  PubMed  CAS  Google Scholar 

  • Kopper F, Volkmann J, ller D, Mehdorn M, Deuschl G. Die tiefe Hirnstimulation zur Behandlung von M. Parkinson, Tremor und Dystonie. Nervenarzt 2003;74:709–725.

    Article  Google Scholar 

  • Kriz G, Hermsdörfer J, Marquardt C, Mai N. Feedback-based training of grip force control in patients with brain damage. Arch Phys Med Rehabil 1995;76:653–659.

    Article  PubMed  CAS  Google Scholar 

  • Kwakkel G, van Peppen R, Wagenaar RC, Wood DS, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, Langhorne P. Effects of augmented exercise therapy time after stroke: a metaanalysis. Stroke 2004;35:2529–2539.

    Article  PubMed  Google Scholar 

  • Lang CE, Schieber MH. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J Neurophysiol 2004;91:1722–1733.

    Article  PubMed  Google Scholar 

  • Larsen C, Schneider W. Spiraldynamische Körperarbeit. Hands-on-Techniken der 3D-Massage. Stuttgart: Thieme; 2007.

    Google Scholar 

  • Law M, Baptiste S, McColl R, Opzoomer A, Polatajko H, Pollock N. The Canadian Occupational Performance Measure: An outcome measurement protocol for occupational therapy. Can J Occup Ther 1990;57:82–87.

    PubMed  CAS  Google Scholar 

  • Lederman SJ, Klatzky RL. Haptic Object Identification. 2. Purposive Exploration. In: Franzen O, Johansson RS, Terenius L (Hrsg). Somesthesis and the neurobiology of the somatosensory cortex. Basel: Birkhauser Verlag; 1996. S. 153–161.

    Chapter  Google Scholar 

  • Levin MF. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis. Brain 1996;119:281–293.

    Article  PubMed  Google Scholar 

  • Lewis GN, Byblow WD. Neurophysiological and behavioural adaptations to a bilateral training intervention in individuals following stroke. Clin Rehabil 2004;18:48–59.

    Article  PubMed  Google Scholar 

  • Lewis JW. Cortical networks related to human use of tools. Neuroscientist 2006;12:211–231.

    Article  PubMed  Google Scholar 

  • Lezak MD Neuropsychological assessment. New York: Oxford University Press; 1981.

    Google Scholar 

  • Liepert J. Neue Therapien in der Neurorehabilitation. Aktuelle Neurologie 2003;30:209–214.

    Article  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C. Treatment- induced cortical reorganization after stroke in humans. Stroke 2000;31:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  • Lincoln N, Leadbitter D. Assessment of motor function in stroke patients. Physiotherapy 1979;19:48–51.

    Google Scholar 

  • Lum PS, Burgar CG, Shor PC, Majmundar M, Van der LM. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002;83:952–959.

    Article  PubMed  Google Scholar 

  • Lum PS, Burgar CG, Van der LM, Shor PC, Majmundar M, Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J Rehabil Res Dev 2006;43:631–642.

    Article  PubMed  Google Scholar 

  • Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehab Res 1981;4:483–492.

    Article  CAS  Google Scholar 

  • Mai N. Störungen der Handfunktion. In: Cramon DYv, Zihl J (Hrsg). Neurologische Rehabilitation. Berlin: Springer; 1988. S. 360–385.

    Google Scholar 

  • Mai N, Blaut M, Hermsdörfer J. Handfunktionen. In: Cramon DYv, Mai N, Ziegler W (Hrsg). Neuropsychologische Diagnostik. Weinheim: VCH Verlag; 1993. S. 225–257.

    Google Scholar 

  • Mai N, Marquardt C. Treatment of writer's cramp. Kinematic measures as an assessment tool for planning and evaluating training procedures. In: Faure C, Keuss P, Lorette G, Vinter A (Hrsg). Advances in handwriting & drawing: a multidisciplinary approach. Paris: Europia; 1994. S. 445–461.

    Google Scholar 

  • Mai N, Marquardt C. Analyse und Therapie motorischer Schreibstörungen. In: Jäncke L, Heuer H (Hrsg). Psychologische Beiträge. Lengerich: PABST Science Publishers; 1995. S. 538–582.

    Google Scholar 

  • Mai N, Marquardt C. Schreibtraining in der neurologischen Rehabilitation. Dortmund: Borgmann; 1999.

    Google Scholar 

  • Mansur CG, Fregni F, Boggio PS, Riberto M, Gallucci-Neto J, Santos CM, Wagner T, Rigonatti SP, Marcolin MA, Pascual-Leone A. A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology 2005;64:1802–1804.

    Article  PubMed  CAS  Google Scholar 

  • Marquardt C, Mai N. A computational procedure for movement analysis in handwriting. J Neurosci Meth 1994;52:39–45.

    Article  CAS  Google Scholar 

  • Marquardt C, Mai N. Diagnostik motorischer Schreibstörungen. Z Handther 1998;1:23–27.

    Google Scholar 

  • Marquardt C, Mai N. Therapieansatz zur Behandlung des Schreibkrampfes. Z Handther 1/99:12–16.

    Google Scholar 

  • Marquardt C, Steidle B, Baur B. Der Schreibkrampf. Ätiologie, Untersuchung und Therapie. In: Jahn T (Hrsg). Bewegungsstörungen bei psychischen Erkrankungen. Berlin: Springer; 2004. S. 233–252.

    Google Scholar 

  • Masiero S, Celia A, Rosati G, Armani M. Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch Phys Med Rehabil 2007;88:142–149.

    Article  PubMed  Google Scholar 

  • Mathiowetz V, Kashman N, Volland G, Weber K, Dowe M, Rogers S. Grip and pinch strength: normative data for adults. Arch Phys Med Rehabil 1985;66:69–74.

    PubMed  CAS  Google Scholar 

  • Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block test of manual dexterity. Am J Occup Ther 1985;39:386–391.

    PubMed  CAS  Google Scholar 

  • McPhee SD. Functional hand evaluations: a review. Am J Occup Ther 1987;41:158–163.

    PubMed  CAS  Google Scholar 

  • Merians AS, Jack D, Boian R, Tremaine M, Burdea GC, Adamovich SV, Recce M, Poizner H. Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002;82:898–915.

    PubMed  Google Scholar 

  • Merians AS, Poizner H, Boian R, Burdea G, Adamovich S. Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke? Neurorehabil Neural Repair 2006;20: 252–267.

    Article  PubMed  Google Scholar 

  • Miller GJT, Light KE. Strength training in spastic hemiparesis – should it be avoided. Neurorehabil 1997;9:17–28.

    Article  Google Scholar 

  • Milner AD, Goodale MA. The visual brain in action. Oxford: Oxford University Press; 2006.

    Google Scholar 

  • Miltner R, Simon U, Netz J, Hömberg V. Bewegungsvorstellung in der Therapie von Patienten mit Hirninfarkt. In: Dettmers C, Rijntjes M, Weiller C (Hrsg). Funktionelle Bildgebung und Physiotherapie. Bad Honnef: Hippocampus; 1998. S. 181–198.

    Google Scholar 

  • Miltner WH, Bauder H, Sommer M, Dettmers C, Taub E. Effects of constraint- induced movement therapy on patients with chronic motor deficits after stroke: a replication. Stroke 1999;30:586–592.

    Article  PubMed  CAS  Google Scholar 

  • Minkwitz K, Platz T. Armmotorik nach Schlaganfall. Neue Ansätze für Assessment und Therapie. Idstein. Schulz-Kirchner; 2004.

    Google Scholar 

  • Mudie MH, Matyas TA. Can simultaneous bilateral movement involve the undamaged hemisphere in reconstruction of neural networks damaged by stroke? Disabil Rehabil 2000;22:23–37.

    Article  PubMed  CAS  Google Scholar 

  • Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 2007;10:1265–1278.

    Article  Google Scholar 

  • Müller K, Hömberg V. Development of speed of repetitive movements in children is determined by structural-changes in corticospinal efferents. Neurosci Lett 1992;144:57–60.

    Article  PubMed  Google Scholar 

  • Myers BJ. Proprioceptive neuromuscular facilitation (PNF) approach. In: Thrombly CA (Hrsg). Occupational therapy for physical dysfunction. Baltimore: Williams & Wilkins; 1989. S. 135–155.

    Google Scholar 

  • Napier JR. The prehensile movements of the human hand. J Bone Joint Surg 1956;38:902–913.

    Google Scholar 

  • Neidhart B. Der AFM-Test. Ein standardisiertes feinmotorisches Testverfahren für die neurologische Therapiepraxis. In: Deutscher Verband der Ergotherapeuten. Hrsg. Grundlagen der Feinmotorik in der Ergotherapie. Idstein: Schulz-Kirchner Verlag; 1993. S. 59–69.

    Google Scholar 

  • Nelles G, Hesse S, Hummelsheim H, Liepert J. Motorische Rehabilitation nach Schlaganfall. In: Diener HC (Hrsg). Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart New York: Thieme; 2003. S. 427–432.

    Google Scholar 

  • Nowak DA, Glasauer S, Hermsdörfer J. Grip force efficiency in longterm deprivation of somatosensory feedback. NeuroReport 2003;14:1803–1807.

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J. Die Analyse der Griffkraft bei der Manipulation von Objekten. Methode zur objektiven Bewertung einer physiologischen und gestörten Handfunktion. Nervenarzt 2004;75:725–733.

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J. Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits. Mov Disord 2005;20:11–25.

    Article  PubMed  Google Scholar 

  • Nowak DA, Hermsdörfer J, Marquardt C, Fuchs HH. Load force coupling during discrete vertical movements in patients with cerebellar atrophy. Exp Brain Res 2002;145:28–39.

    Article  PubMed  Google Scholar 

  • Nowak DA, Tisch S, Hariz M, Limousin P, Topka H, Rothwell JC. Sensory timing cues improve akinesia of grasping movements in Parkinson's disease: a comparison to the effects of subthalamic nucleus stimulation. Mov Disord 2006;21:166–172.

    Article  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J. The role of the cerebellum for predictive control of grasping. Cerebellum 2007;6:7–17.

    Article  PubMed  Google Scholar 

  • Paeth Rohlfs B. Erfahrungen mit dem Bobath-Konzept. Grundlagen – Behandlung – Fallbeispiele. Stuttgart: Thieme; 2007.

    Google Scholar 

  • Page SJ, Levine P, Leonard A. Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke 2007;38:1293–1297.

    Article  PubMed  Google Scholar 

  • Page SJ, Levine P, Leonard AC. Effects of mental practice on affected limb use and function in chronic stroke. Arch Phys Med Rehabil 2005;86:399–402.

    Article  PubMed  Google Scholar 

  • Parry RH, Lincoln NB, Vass CD. Effect of severity of arm impairment on response to additional physiotherapy early after stroke. Clinical Rehabilitation 1999;13:187–198.

    Article  PubMed  CAS  Google Scholar 

  • Perenin MT. Optische Ataxie. In: Karnath HO, Thier P (Hrsg). Neuropsychologie. Berlin Heidelberg New York: Springer; 2003. S. 327–335.

    Google Scholar 

  • Perfetti C. Der hemiplegische Patient. Kognitiv-therapeutische Übungen. München: Pflaum; 1997.

    Google Scholar 

  • Perfetti C. Rehabilitieren mit Gehirn. Kognitiv-therapeutische Übungen in Neurologie und Orthopädie. München: Pflaum; 2006.

    Google Scholar 

  • Pinkowski C. Armfunktionstests auf Disabilityebene (Fähigkeitsstörungen). In: Minkwitz K, Platz T (Hrsg). Armmotorik nach Schlaganfall. Neue Ansätze für Assessment und Therapie. Idstein: Schulz-Kirchner; 2001. S. 41–67.

    Google Scholar 

  • Platz T. Evidenzbasierte Armrehabilitation. Eine systematische Literaturübersicht. Nervenarzt 2003;74:841–849.

    Article  PubMed  CAS  Google Scholar 

  • Platz T. Impairment-oriented training (IOT) – Scientific concept and evidence-based treatment strategies. Restor Neurol Neurosci 2004;22:301–315.

    PubMed  CAS  Google Scholar 

  • Platz T. IOT. Impairment-Oriented Training. Schädigungs-orientiertes Training. Theorie und deutschsprachige Manuale für Therapie und Assessment. Deutscher Wissenschafts-Verlag (DWV) 2006.

    Google Scholar 

  • Platz T, Winter T, Muller N, Pinkowski C, Eickhof C, Mauritz KH. Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Arch Phys Med Rehabil 2001;82:961–968.

    Article  PubMed  CAS  Google Scholar 

  • Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L. Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J Rehabil Res Dev 2003;40:443–453.

    Article  PubMed  Google Scholar 

  • Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, IJzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev 2006;43:171–184.

    Article  PubMed  Google Scholar 

  • Prosiegel M. Beschreibung der Patientenstichprobe einer neuropsychologischen Rehabilitationsklinik. In: Cramon DYv, Zihl J (Hrsg). Neurologische Rehabilitation. Berlin: Springer; 1988. S. 386–398.

    Google Scholar 

  • Raghavan P, Krakauer JW, Gordon AM. Impaired anticipatory control of fingertip forces in patients with a pure motor or sensorimotor lacunar syndrome. Brain 2006;129:1415–1425.

    Article  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M. The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 1998;106:283–296.

    Article  PubMed  CAS  Google Scholar 

  • Rossetti Y, Pisella L, Vighetto A. Optic ataxia revisited: visually guided action versus immediate visuomotor control. Exp Brain Res 2003;153:171–179.

    Article  PubMed  Google Scholar 

  • Santos M, Zahner LH, Mckiernan BJ, Mahnken JD, Quaney B. Neuromuscular electrical stimulation improves severe hand dysfunction for individuals with chronic stroke: a pilot study. J Neurol Phys Ther 2006;30:175–183.

    PubMed  Google Scholar 

  • Sathian K, Greenspan AI, Wolf SL. Doing it with mirrors: a case study of a novel approach to neurorehabilitation. Neurorehabil Neural Repair 2000;14:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Schaechter JD, Kraft E, Hilliard TS, Dijkhuizen RM, Benner T, Finklestein SP, Rosen BR, Cramer SC. Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair 2002;16:326–338.

    Article  PubMed  Google Scholar 

  • Scheidtmann K. Advances in adjuvant pharmacotherapy for motor rehabilitation: effects of levodopa. Restor Neurol Neurosci 2004;22:393–398.

    PubMed  Google Scholar 

  • Schenk T, Baur B, Steidle B, Marquardt C. Does training improve writer's cramp? An evaluation of a behavioural treatment approach usinf kinematic analysis. J Hand Ther 2004;17:349–363.

    Article  PubMed  Google Scholar 

  • Schoppe KJ. Das MLS-Gerät: Ein neuer Testapparat zur Messung feinmotorischer Leistungen. Diagnostica 1974;20:43–46.

    Google Scholar 

  • Selzer M, Clarke S, Cohen L, Duncan PW, Gage F. Textbook of Neural Repair and Rehabilitation, Vol 2, Medical Neurorehabilitation. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  • Shepherd RB, Carr JH. Motor performance as a measure of the effects of intervention in movement rehabilitation. Neurol Rehabil 1995;2:81–86.

    Google Scholar 

  • Spijkers W. Visuelle Verarbeitungszeit und die Kontrolle manueller Zielbewegungen. In: Jäncke L, Heuer H (Hrsg). Psychologische Beiträge. Lengerich: PABST Science Publishers; 1995. S. 297–311.

    Google Scholar 

  • Stephan KM, Dettmers C, Fink GR, Geyer S, Seitz RJ. Kortikale Repräsentation der Bewegungsvorstellung. Neurol Rehabil 1998;4:125–128.

    Google Scholar 

  • Sterr A, Elbert T, Berthold I, Kolbel S, Rockstroh B, Taub E. Longer versus shorter daily constraint-induced movement therapy of chronic hemiparesis: an exploratory study. Arch Phys Med Rehabil 2002;83:1374–1377.

    Article  PubMed  Google Scholar 

  • Sterr A, Freivogel S. Motor-improvement following intensive training in low-functioning chronic hemiparesis. Neurology 2003;61:842–844.

    PubMed  Google Scholar 

  • Steultjens EM, Dekker J, Bouter LM, van de Nes JC, Cup EH, van den Ende CH. Occupational therapy for stroke patients: a systematic review. Stroke 2003;34:676–687.

    Article  PubMed  Google Scholar 

  • Stevens JA, Stoykov ME. Simulation of bilateral movement training through mirror reflection: a case report demonstrating an occupational therapy technique for hemiparesis. Top Stroke Rehabil 2004;11:59–66.

    Article  PubMed  Google Scholar 

  • Struppler A, Havel P, Muller-Barna P. Facilitation of skilled finger movements by repetitive peripheral magnetic stimulation (RPMS) – a new approach in central paresis. Neurorehabil 2003;18:69–82.

    CAS  Google Scholar 

  • Sunderland A, Tinson D, Bradley L, Hewer RL. Arm function after stroke: An evaluation of grip strength as a measure of recovery and a prognostic indicator. J Neurol Neurosurg Psychiat 1989;52:1267–1272.

    Article  PubMed  CAS  Google Scholar 

  • Suppé B, Spirgi-Gantert I. FBL Klein-Vogelbach Functional Kinetics: Die Grundlagen Bewegungsanalyse, Untersuchung, Behandlung. Berlin Heidelberg New York: Springer; 2007.

    Google Scholar 

  • Taub E, Miller NE, Novack TA, Cook EW, III, Fleming WC, Nepomuceno CS, Connell JS, Crago JE. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993;74:347–354.

    PubMed  CAS  Google Scholar 

  • Taub E, Uswatte G, Pidikiti R. Constraint-Induced Movement Therapy – a New Family of Techniques with Broad Application to Physical Rehabilitation – a Clinical Review. J Rehabil Res Dev 1999;36:237–251.

    PubMed  CAS  Google Scholar 

  • Tijs E, Matyas TA. Bilateral training does not facilitate performance of copying tasks in poststroke hemiplegia. Neurorehabil.Neural Repair 2006;20:473–483.

    Article  CAS  Google Scholar 

  • Valvoda JT, Assenmacher I, Dohle C, Kuhlen T, Bischof C. NeuroVRAC – a comprehensive approach to virtual reality-based neurological assessment and treatment systems. Stud Health Technol Inform 2003;94:370–372.

    PubMed  Google Scholar 

  • van der Lee JH. Constraint-induced therapy for stroke: more of the same or something completely different? Curr Opin Neurol 2001;14:741–744.

    Article  PubMed  Google Scholar 

  • van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Deville WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke 1999;30:2369–2375.

    Article  PubMed  Google Scholar 

  • van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what's the evidence? Clin Rehabil 2004;18:833–862.

    Article  PubMed  Google Scholar 

  • Voller B, Floel A, Werhahn KJ, Ravindran S, Wu CW, Cohen LG. Contralateral hand anesthesia transiently improves poststroke sensory deficits. Ann Neurol 2006;59:385–388.

    Article  PubMed  Google Scholar 

  • Volpe BT, Krebs HI, Hogan N, Edelstein OL, Diels C, Aisen M. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000;54:1938–1944.

    PubMed  CAS  Google Scholar 

  • Whitall J, Waller SM, Silver KHC, Macko RF. Repetitive Bilateral Arm Training with Rhythmic Auditory Cueing Improves Motor Function in Chronic Hemiparetic Stroke. Stroke 2000;31:2390–2395.

    Article  PubMed  CAS  Google Scholar 

  • WHO (World Health Organization). Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit (ICF); 2005 (Zugang 17.5.2007: www.dimdi.de/static/de/klassi/icf/index.htm)

  • Winstein CJ, Rose DK, Tan SM, Lewthwaite R, Chui HC, Azen SP. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: A pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil 2004;85:620–628.

    Article  PubMed  Google Scholar 

  • Woldag H, Waldmann G, Heuschkel G, Hummelsheim H. Is the repetitive training of complex hand and arm movements beneficial for motor recovery in stroke patients? Clin Rehabil 2003;17:723–730.

    Article  PubMed  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LA. Comparison of motor copy and targeted biofeedback training techniques for restitution of upper extremity function among patients with neurologic disorders. Phys Ther 1989;69:719–735.

    PubMed  CAS  Google Scholar 

  • Wolf SL, Lecraw DE, Barton LB, Jahn BB. Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients. Exp Neurol 1989;104:125–132.

    Article  PubMed  CAS  Google Scholar 

  • Wolf SL, Winstein CJ, Miller JP, Taub E, Uswatte G, Morris D, Giuliani C, Light KE, Nichols-Larsen D, for the EXCITE Investigators. Effect of constraint-Induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE randomized clinical trial. JAMA 2006;296:2095–2104.

    Google Scholar 

  • Wolpert DM, Flanagan JR. Motor prediction. CurrBiol 2001;11:729–732.

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science 1995;269:1880–1882.

    Article  PubMed  CAS  Google Scholar 

  • Wu CW, Seo HJ, Cohen LG. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch Phys Med Rehabil 2006;87:351–357.

    Article  PubMed  Google Scholar 

  • Wynn Parry CB. Rehabilitation of the hand. London: Butterworth; 1981.

    Google Scholar 

  • Zeuner KE, Bara-Jimenez W, Noguchi PS, Goldstein SR, Dambrosia JM, Hallett M. Sensory training for patients with focal hand dystonia. Ann Neurol 2002;51:593–598.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hermsdörfer, J. (2010). Handfunktionsstörungen: Assessment und Management. In: NeuroRehabilitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12915-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12915-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12914-8

  • Online ISBN: 978-3-642-12915-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics