Skip to main content

Antisense RNA-Mediated Regulation of the p53 Tumor Suppressor

  • Chapter
  • First Online:
RNA Technologies and Their Applications

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The tumor suppressor p53 triggers cell death by apoptosis in response to cellular stress. p53 is regulated at the protein level by various posttranslational modifications, such as phosphorylation and acetylation. However, recent studies have revealed a critical regulation of p53 at the RNA level. A natural antisense gene, designated Wrap53, is localized in a head-to-head fashion with p53 on human chromosome 17p13. Wrap53 mRNA positively regulates steady-state levels of p53 mRNA and p53 protein by targeting the 5′ untranslated region of p53 mRNA. Knockdown of Wrap53 by siRNA results in a significant decrease in p53 mRNA and suppression of p53 induction upon DNA damage, whereas overexpression of Wrap53 transcripts containing the antisense overlap region enhances p53 mRNA and protein levels and sensitizes cells to p53-dependent apoptosis. Antisense transcription, which occurs widely in mammalian genomes, is thought to play an important role in regulation of gene expression. Wrap53 antisense RNA is a novel mechanism for controlling p53 activity and an interesting example of antisense-mediated gene regulation in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balzer M, Wagner R (1998) Mutations in the leader region of ribosomal RNA operons cause structurally defective 30 S ribosomes as revealed by in vivo structural probing. J Mol Biol 276:547–557

    Article  PubMed  CAS  Google Scholar 

  • Besancon W, Wagner R (1999) Characterization of transient RNA–RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA. Nucleic Acids Res 27:4353–4362

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Carlile M, Nalbant P, Preston-Fayers K et al (2008) Processing of naturally occurring sense/antisense transcripts of the vertebrate Slc34a gene into short RNAs. Physiol Genomics 34:95–100

    Article  PubMed  CAS  Google Scholar 

  • Carlile M, Swan D, Jackson K et al (2009) Strand selective generation of endo-siRNAs from the Na/phosphate transporter gene Slc34a1 in murine tissues. Nucleic Acids Res 37:2274–2282

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Sun M, Kent WJ et al (2004) Over 20% of human transcripts might form sense–antisense pairs. Nucleic Acids Res 32:4812–4820

    Article  PubMed  CAS  Google Scholar 

  • Crothers DM, Cole PE, Hilbers CW et al (1974) The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol 87:63–88

    Article  PubMed  CAS  Google Scholar 

  • Engstrom PG, Suzuki H, Ninomiya N et al (2006) Complex loci in human and mouse genomes. PLoS Genet 2:e47

    Article  PubMed  Google Scholar 

  • Faghihi MA, Wahlestedt C (2006) RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol 7:R38

    Article  PubMed  Google Scholar 

  • Fish JE, Matouk CC, Yeboah E et al (2007) Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem 282:15652–15666

    Article  PubMed  CAS  Google Scholar 

  • Han J, Lee Y, Yeom KH et al (2006) Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125:887–901

    Article  PubMed  CAS  Google Scholar 

  • Jen CH, Michalopoulos I, Westhead DR et al (2005) Natural antisense transcripts with coding capacity in Arabidopsis may have a regulatory role that is not linked to double-stranded RNA degradation. Genome Biol 6:R51

    Article  PubMed  Google Scholar 

  • Katayama S, Tomaru Y, Kasukawa T et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  • Kim H, You S, Foster LK, Farris J, Foster DN (2001) The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene 20:5118–5123

    Google Scholar 

  • Koshizuka Y, Ikegawa S, Sano M et al (2001) Isolation, characterization, and mapping of the mouse and human WDR8 genes, members of a novel WD-repeat gene family. Genomics 72:252–259

    Article  PubMed  CAS  Google Scholar 

  • Le MT, Teh C, Shyh-Chang N et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23:862–876

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi S, Henriksson S, Corcoran M et al (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33:462–471

    Article  PubMed  CAS  Google Scholar 

  • Munroe SH, Zhu J (2006) Overlapping transcripts, double-stranded RNA and antisense regulation: a genomic perspective. Cell Mol Life Sci 63:2102–2118

    Article  PubMed  CAS  Google Scholar 

  • Oeder S, Mages J, Flicek P et al (2007) Uncovering information on expression of natural antisense transcripts in Affymetrix MOE430 datasets. BMC Genomics 8:200

    Article  PubMed  Google Scholar 

  • Raver-Shapira N, Oren M (2007) Tiny actors, great roles: microRNAs in p53’s service. Cell Cycle 6:2656–2661

    Article  PubMed  CAS  Google Scholar 

  • Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312

    Article  PubMed  CAS  Google Scholar 

  • Tycowski KT, Shu MD, Kukoyi A et al (2009) A conserved WD40 protein binds the cajal body localization signal of scaRNP particles. Mol Cell 34:47–57

    Article  PubMed  CAS  Google Scholar 

  • Venteicher AS, Abreu EB, Meng Z et al (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    Article  PubMed  CAS  Google Scholar 

  • Yelin R, Dahary D, Sorek R et al (2003) Widespread occurrence of antisense transcription in the human genome. Nat Biotechnol 21:379–386

    Article  PubMed  CAS  Google Scholar 

  • Yu W, Gius D, Onyango P et al (2008) Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451:202–206

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chen X (2008) Posttranscriptional regulation of p53 and its targets by RNA-binding proteins. Curr Mol Med 8:845–849

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swedish Cancer Society (Cancerfonden), the Swedish Childhood Cancer Society (Barncancerfonden), and the King Gustaf V Jubilee Fund for generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Farnebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farnebo, M., Wiman, K.G. (2010). Antisense RNA-Mediated Regulation of the p53 Tumor Suppressor. In: Erdmann, V., Barciszewski, J. (eds) RNA Technologies and Their Applications. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12168-5_12

Download citation

Publish with us

Policies and ethics