Skip to main content

Calorimetry at the Solid–Liquid Interface

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

Abstract

Broad principles of Solid-Liquid calorimetry together with some illustrative examples of its use in the field of catalysis are presented here. The first use is related to the determination of surface properties of catalysts, adsorbents and solid materials in contact with liquids. In particular, it is shown how to evaluate the capacity of a given solid to establish different types of interaction with its liquid environment or to calculate its specific surface area accessible to liquids. The second use includes the measurement of the heat effects accompanying catalytic reactions and the related interfacial phenomena at Solid-Liquid and Liquid-Liquid interfaces. Examples of competitive ion adsorption from dilute aqueous solutions, as well as the formation of surfactant aggregates either in aqueous solution or at the Solid-Liquid interface are considered in view of potential applications in Environmental Remediation and Micellar Catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Defay, I. Prigogine, A. Bellemans, D.H. Everett, Surface Tension and Adsorption (Longmans, London, 1966)

    Google Scholar 

  2. P.C. Hiemenz, Principles of Colloid and Surface Chemistry, 2nd edn. (Marcel Dekker, New York, 1986)

    Google Scholar 

  3. R.J. Hunter, Foundations of Colloid Science,, vol. 1 and 2, (Oxford University Press, Oxford, 1989)

    Google Scholar 

  4. A.W. Adamson, Physical Chemistry of Surfaces, 5th edn. (Wiley-Interscience, New York, 1990)

    Google Scholar 

  5. J. Lyklema, Fundamentals of Interface and Colloid Science, vol. 1–3, (Academic Press, London, 1991–2000)

    Google Scholar 

  6. D.H. Everett, Reporting data on adsorption from solution at the solid/solution interface (Recommendations 1986). Pure Appl. Chem. 58(7), 967–984 (1986). doi:10.1351/pac198658070967

    Article  CAS  Google Scholar 

  7. W. Rudzinski, D.H. Everett, Adsorption of Gases on Heterogeneous Surfaces (Academic Press, London, 1992)

    Google Scholar 

  8. E.A. Guggenheim, Thermodynamics, 5th edn. (North Holland Publishing Co., Amsterdam, 1967)

    Google Scholar 

  9. J.F. Padday, in Surface Tension. II. The Measurement of Surface Tension, vol 1, ed. by E. Matijevic, F. Eirich. Surface and Colloid Science, vol 1 (Wiley-Interscience, New York, 1969), pp. 101–149

    Google Scholar 

  10. N.R. Pallas, Y. Harrison, An automated drop shape apparatus and the surface tension of pure water. Colloids Surf. 43(2), 169–194 (1990). doi:10.1016/0166-6622(90)80287-E

    Article  CAS  Google Scholar 

  11. R. Cini, G. Loglio, A. Ficalbi, Temperature dependence of the surface tension of water by the equilibrium ring method. J. Colloid Interface Sci. 41(2), 287–297 (1972). doi:10.1016/0021-9797(72)90113-0

    Article  CAS  Google Scholar 

  12. G. Loglio, A. Ficalbi, R. Cini, A new evaluation of the surface tension temperature coefficients for water. J. Colloid Interface Sci. 64(1), 198–198 (1978). doi:10.1016/0021-9797(78)90352-1

    Article  CAS  Google Scholar 

  13. R.C. Weast (ed.), Handbook of Chemistry and Physics, 45th edn. (CRC, Cleveland, 1964)

    Google Scholar 

  14. A.R.C. Westwood, T.T. Hitch, Surface energy of 100 potassium chloride. J. Appl. Phys. 34(10), 3085–3089 (1963)

    Article  CAS  Google Scholar 

  15. S. Boffi, M. Ricci, On the cleavage energy of magnesium oxide. Mater. Chem. 1(4), 289–296 (1976). doi:10.1016/0390-6035(76)90030-4

    Article  CAS  Google Scholar 

  16. J.J. Gilman, Direct measurements of the surface energies of crystals. J. Appl. Phys. 31(12), 2208–2218 (1960)

    Article  CAS  Google Scholar 

  17. E. Orowan, Die Zugfestigkeit von Glimmer und das Problem der technischen Festigkeit. Z. für Phys. A Hadrons Nuclei 82(3), 235–266 (1933). doi:10.1007/bf01341490

    Article  Google Scholar 

  18. R.J. Good, Contact angle, Wetting, and Adhesion: a critical review, in Contact Angle, ed. by K.L. Mittal, Wettability and Adhesion (VSP, Utrecht, 1993), pp 3–36

    Google Scholar 

  19. C.J. Van Oss, M.K. Chaudhury, R.J. Good, Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 88(6), 927–941 (1988). doi:10.1021/cr00088a006

    Article  Google Scholar 

  20. A.C. Zettlemoyer, Hydrophobic surfaces. J. Colloid Interface Sci. 28(3–4), 343–369 (1968). doi:10.1016/0021-9797(68)90066-0

    Article  CAS  Google Scholar 

  21. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1991)

    Google Scholar 

  22. J.C. Berg, The Role of Acid-Base Interactions in Wetting and Related Phenomena, in Wettability, ed. by J.C. Berg (Marcel Dekker, New York, 1993), pp. 75–148

    Google Scholar 

  23. C.J. Van Oss, M.K. Chaudhury, R.J. Good, Monopolar surfaces. Adv. Colloid Interface Sci. 28, 35–64 (1987). doi:10.1016/0001-8686(87)80008-8

    Article  Google Scholar 

  24. D.B. Hough, L.R. White, The calculation of Hamaker constants from Liftshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14(1), 3–41 (1980). doi:10.1016/0001-8686(80)80006-6

    Article  CAS  Google Scholar 

  25. J. Visser, On Hamaker constants: a comparison between Hamaker constants and Lifshitz-van der Waals constants. Adv. Colloid Interface Sci. 3(4), 331–363 (1972). doi:10.1016/0001-8686(72)85001-2

    Article  CAS  Google Scholar 

  26. C.J. Van Oss, R.J. Good, M.K. Chaudhury, The role of van der Waals forces and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy surfaces. J. Colloid Interface Sci. 111(2), 378–390 (1986). doi:10.1016/0021-9797(86)90041-X

    Article  Google Scholar 

  27. R.S. Drago, Quantitative evolution and prediction of donor-acceptor interactions. Struct. Bond. (Berlin) 15, 73–139 (1973)

    Article  CAS  Google Scholar 

  28. F.M. Fowkes, Quantitative characterization of the acid-base properties of solvents, polymers, and inorganic surfaces. in Acid-Base Interactions—Relevance to Adhesion Science and Technology ed. by K.L. Mittal, H.R.J. Anderson (VSP, Utrecht, 1991), pp. 93–115

    Google Scholar 

  29. M.K. Chaudhury, Interfacial interaction between low-energy surfaces. Mater. Sci. Eng. R Rep. 16(3), 97–159 (1996). doi:10.1016/0927-796X(95)00185-9

    Article  Google Scholar 

  30. J.M. Douillard, T. Zoungrana, S. Partyka, Surface Gibbs free energy of minerals: some values. J. Pet. Sci. Eng. 14(1–2), 51–57 (1995). doi:10.1016/0920-4105(95)00018-6

    Article  CAS  Google Scholar 

  31. L.A. Girifalco, R.J. Good, A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. J. Phys. Chem. 61(7), 904–909 (1957). doi:10.1021/j150553a013

    Article  CAS  Google Scholar 

  32. C.J. Van Oss, Acid-base interfacial interactions in aqueous media. Colloids Surf. A Physicochemical Eng. Aspects 78, 1–49 (1993). doi:10.1016/0927-7757(93)80308-2

    Article  Google Scholar 

  33. P.G. De Gennes, Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827 (1985)

    Article  Google Scholar 

  34. A.W. Neumann, R.J. Good, Technique of measuring contact angle, in Surface and Colloid Science, vol. 11, ed. by R.J. Good, R.R. Stromberg (Plenum Press, New York, 1979), pp. 31–91

    Chapter  Google Scholar 

  35. C.J. Van Oss, R.F. Giese, Z. Li, K. Murphy, J. Norris, M.K. Chaudhury, R.J. Good, Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhes. Sci. Technol. 6, 413–428 (1992). doi:10.1163/156856192X00755

    Article  Google Scholar 

  36. H.G. Bruil, J.J. van Aartsen, The determination of contact angles of aqueous surfactant solutions on powders. Colloid Polym. Sci. 252(1), 32–38 (1974). doi:10.1007/bf01381692

    Article  CAS  Google Scholar 

  37. J.M. Douillard, V. Médout-Marère, A new interpretation of contact angle variations in view of a recent analysis of immersion calorimetry. J. Colloid Interface Sci. 223(2), 255–260 (2000). doi:10.1006/jcis.1999.6679

    Article  CAS  Google Scholar 

  38. V. Médout-Marère, S. Partyka, G. Chauveteau, J.M. Douillard, R. Dutartre, Surface heterogeneity of passively oxidized silicon carbide particles: vapor adsorption isotherms. J. Colloid Interface Sci. 262(2), 309–320 (2003). doi:10.1016/S0021-9797(03)00198-X

    Article  Google Scholar 

  39. C.J. Van Oss, The Apolar and Polar Properties of Liquid Water and Other Condensed-Phase Materials. in Interface Science and Technology, vol 16 (Elsevier, Amsterdam, 2008), pp. 13–30. doi:10.1016/S1573-4285(08)00202-0

  40. V. Médout-Marère, A. El Ghzaoui, C. Charnay, J.M. Douillard, G. Chauveteau, S. Partyka, Surface Heterogeneity of Passively Oxidized Silicon Carbide particles: Hydrophobic-Hydrophilic partition. J. Colloid Interface Sci. 223(2), 205–214 (2000). doi:10.1006/jcis.1999.6625

    Article  Google Scholar 

  41. J.M. Douillard, Concerning the thermodynamic consistency of the "Surface Tension Components" equations. J. Colloid Interface Sci. 188(2), 511–515 (1997). doi:10.1006/jcis.1997.4768

    Article  CAS  Google Scholar 

  42. J.M. Douillard, J. Zajac, H. Malandrini, F. Clauss, Contact angle and film pressure: study of a talc surface. J. Colloid Interface Sci. 255(2), 341–351 (2002). doi:10.1006/jcis.2002.8611

    Article  CAS  Google Scholar 

  43. M.J. Meziani, J. Zajac, J.-M. Douillard, D.J. Jones, S. Partyka, J. Rozière, Evaluation of surface enthalpy of porous aluminosilicates of the MCM-41 type using immersional calorimetry: effect of the pore size and framework Si:Al ratio. J. Colloid Interface Sci. 233(2), 219–226 (2001). doi:10.1006/jcis.2002.8611

    Article  CAS  Google Scholar 

  44. V. Médout-Marère, H. Belarbi, P. Thomas, F. Morato, J.C. Giuntini, J.M. Douillard, Thermodynamic analysis of the immersion of a swelling clay. J. Colloid Interface Sci. 202(1), 139–148 (1998). doi:10.1006/jcis.1998.5400

    Article  Google Scholar 

  45. M.A. Wilson, A. Pohorille, L.R. Pratt, Molecular dynamics of the water liquid-vapor interface. J. Phys. Chem. 91(19), 4873–4878 (1987). doi:10.1021/j100303a002

    Article  CAS  Google Scholar 

  46. W. Drost-Hansen, Structure of water near solid interfaces. Ind. Eng. Chem. 61(11), 10–47 (1969). doi:10.1021/ie50719a005

    Article  CAS  Google Scholar 

  47. W.D. Harkins, The Physical Chemistry of Surface Films (Reinhold, New York, 1952)

    Google Scholar 

  48. Proceedings of BP Symposium on the Significance of the Heats of Adsorption at the Solid-Liquid Interface. in A.J. Groszek, Sunbury-on-Thames, BP Research Centre (1971)

    Google Scholar 

  49. S. Partyka, J.M. Douillard, Nature of interactions between organic pure liquids and model rocks: a calorimetric investigation. J. Pet. Sci. Eng. 13(2), 95–102 (1995). doi:10.1016/0920-4105(94)00065-C

    Article  CAS  Google Scholar 

  50. J.M. Douillard, What can really be deduced from enthalpy of immersional wetting experiments? J. Colloid Interface Sci. 182(1), 308–311 (1996). doi:10.1006/jcis.1996.0468

    Article  CAS  Google Scholar 

  51. T.W. Healy, D.W. Fuerstenau, The oxide-water interface-Interrelation of the zero point of charge and the heat of immersion. J. Colloid Sci. 20(4), 376–386 (1965). doi:10.1016/0095-8522(65)90083-8

    Article  CAS  Google Scholar 

  52. D.A. Griffiths, D.W. Fuerstenau, The effect of pH and temperature on the heat of immersion of alumina. J. Colloid Interface Sci. 80(1), 271–283 (1981). doi:10.1016/0021-9797(81)90181-8

    Article  CAS  Google Scholar 

  53. M. El Wafir, Approche thermodynamique des interactions entre les liquides et les solides modeles issus des roches reservoirs de petrole. Ph.D. Thesis, (University of Montpellier 2, Montpellier 1991)

    Google Scholar 

  54. S. Partyka, F. Rouquerol, J. Rouquerol, Calorimetric determination of surface areas: Possibilities of a modified Harkins and Jura procedure. J. Colloid Interface Sci. 68(1), 21–31 (1979). doi:10.1016/0021-9797(79)90255-8

    Article  CAS  Google Scholar 

  55. J. Fripiat, J. Cases, M. Francois, M. Letellier, Thermodynamic and microdynamic behavior of water in clay suspensions and gels. J. Colloid Interface Sci. 89(2), 378–400 (1982). doi:10.1016/0021-9797(82)90191-6

    Article  CAS  Google Scholar 

  56. X.-C. Zeng, Y. Chen, X.-N. Chen, J.-Q. Xie, F.-B. Jiang, Thermo-kinetic research method for faster reactions: modifier method of distorted thermoanalytical curve. Thermochim. Acta 332(1), 97–102 (1999). doi:10.1016/S0040-6031(99)00092-1

    Article  CAS  Google Scholar 

  57. W. Hemminger, G. Höhne, Calorimetry—Fundamentals and Practice (Verlag Chemie, Weinheim/Basel, 1984)

    Google Scholar 

  58. W. Zielenkiewicz, E. Margas, Theory of Calorimetry (Kluwer Academic Publishers, Dordrecht, 2002)

    Google Scholar 

  59. E. Calvet, H. Prat, Microcalorimetrie, Applications Physico-Chimiques et Biologiques (Masson, Paris, 1956)

    Google Scholar 

  60. H. Malandrini, Une etude thermodynamique de l’energie superficielle des solides divises : Determination de la tension superficielle de poudres talco-chloriteuses. Ph.D. Thesis, (University of Montpellier 2, Montpellier, 1995)

    Google Scholar 

  61. C. Tanford, The Hydrophobic Effect. Formation of Micelles and Biological Membranes, 2nd edn. (Wiley, New York, 1980)

    Google Scholar 

  62. M.J. Rosen, Surfactants and Interfacial Phenomena, 2nd edn. (Wiley, New York, 1989)

    Google Scholar 

  63. J. Lyklema, Adsorption at solid-liquid interfaces with special reference to emulsion systems. Colloids Surf. A Physicochemical Eng. Aspects 91, 25–38 (1994). doi:10.1016/0927-7757(94)02718-8

    Article  CAS  Google Scholar 

  64. R. Denoyel, F. Rouquerol, J. Rouquerol, Thermodynamics of adsorption from solution: Experimental and formal assessment of the enthalpies of displacement. Journal of Colloid and Interface Science 136(2), 375–384 (1990). doi:10.1016/0021-9797(90)90384-Z

    Article  CAS  Google Scholar 

  65. W. Rudzinski, J. Narkiewicz-Michalek, R. Charmas MD, Piasecki W, Zajac J, Thermodynamics of adsorption at heterogeneous solid—liquid interfaces, in Interfacial Dynamics, ed. by N. Kallay, Surfactant Science Series (Marcel Dekker, New York , 1999), pp. 83–162

    Google Scholar 

  66. F.D. Rossini, Chemical Thermodynamics, 3rd edn. (Wiley, New York, 1961)

    Google Scholar 

  67. I. Prigogine, A. Bellemans, V. Mathot, The Molecular Theory of Solutions (North-Holland Publishing Company, Amsterdam, 1957)

    Google Scholar 

  68. H.S. Harned, B.B. Owen, The Physical Chemistry of Electrolytic Solutions (Reinhold, New York, 1958)

    Google Scholar 

  69. R.M. Garrels, C.L. Christ, Solutions, Minerals and Equilibria (Freeman, Cooper & Co., San Francisco, 1965)

    Google Scholar 

  70. M.J. Sparnaay, The Electrical Double Layer, vol 4, 1st edn. Properties of Interfaces, (Pergamon Press, Glasgow, 1972)

    Google Scholar 

  71. L.K. Koopal, Adsorption of ions and surfactants, in Coagulation and Flocculation: Theory and Applications, ed. by B. Dobias, vol. 47, Surfactant Science Series, (Marcel Dekker, New York, 1993), pp. 101–208

    Google Scholar 

  72. H.-H. Kohler, Surface charge and surface potential, in Coagulation and Flocculation: Theory and Applications, ed. by B. Dobias, vol. 47, Surfactant Science Series, (Marcel Dekker, New York, 1993), pp. 37–56

    Google Scholar 

  73. J. Zajac, Adsorption microcalorimetry used to study interfacial aggregation of quaternary ammonium surfactants (zwitterionic and cationic) on powdered silica supports in dilute aqueous solutions. Colloids Surf. A Physicochemical Eng. Aspects 167(1–2), 3–19 (2000). doi:10.1016/S0927-7757(99)00479-3

    Article  CAS  Google Scholar 

  74. J. Zajac, C. Chorro, M. Lindheimer, S. Partyka, Thermodynamics of Micellization and Adsorption of Zwitterionic Surfactants in Aqueous Media. Langmuir 13(6), 1486–1495 (1997). doi:10.1021/la960926d

    Article  CAS  Google Scholar 

  75. J. Zajac, A.J. Groszek, Adsorption of C60 fullerene from its toluene solutions on active carbons: Application of flow microcalorimetry. Carbon 35(8), 1053–1060 (1997). doi:10.1016/S0008-6223(97)00058-4

    Article  CAS  Google Scholar 

  76. W. Rudzinski, J. Zajac, I. Dekany, F. Szanto, Heats of immersion in monolayer adsorption from binary liquid mixtures on heterogeneous solid surfaces: equations for excess isotherms and heats of immersion corresponding to condensation approximation and Rudzinski-Jagiello approach. J. Colloid Interface Sci. 112(2), 473–483 (1986). doi:10.1016/0021-9797(86)90115-3

    Article  CAS  Google Scholar 

  77. D.H. Everett, Enthalpy and entropy effects in adsorption from solution. J. Phys. Chem. 85(22), 3263–3265 (1981). doi:10.1021/j150622a012

    Article  CAS  Google Scholar 

  78. G.W. Woodbury Jr, L.A. Noll, Heat of adsorption of liquid mixtures on solid surfaces: comparison of theory and experiment. Colloids Surf. 8(1), 1–15 (1983). doi:10.1016/0166-6622(83)80068-7

    Article  CAS  Google Scholar 

  79. A.J. Groszek, Flow adsorption microcalorimetry. Thermochim. Acta 312(1–2), 133–143 (1998). doi:10.1016/S0040-6031(97)00447-4

    Article  CAS  Google Scholar 

  80. A.J. Groszek, M.J. Templer, Innovative flow-adsorption microcalorimetry. ChemTech 29(11), 19–26 (1999)

    CAS  Google Scholar 

  81. R. Denoyel, F. Rouquerol, J. Rouquerol, Interest and requirements of liquid-flow microcalorimetry in the study of adsorption from solution in the scope of tertiary oil recovery, in Adsorption from Solution, ed. by C. Rochester (Academic Press, London, 1982), pp. 1–10

    Google Scholar 

  82. G.W. Woodbury Jr, L.A. Noll, Heats of adsorption from flow calorimetry: relationships between heats measured by different methods. Colloids Surf. 28, 233–245 (1987). doi:10.1016/0166-6622(87)80187-7

    Article  CAS  Google Scholar 

  83. R. Denoyel, F. Rouquerol, J. Rouquerol, Adsorption of anionic surfactants on alumina: complementarity of the information provided by batch and liquid flow microcalorimetry. Colloids Surf. 37, 295–307 (1989). doi:10.1016/0166-6622(89)80126-X

    Article  Google Scholar 

  84. J.M. Miller, Chromatography: Concepts and Contrasts, 2nd edn. (Wiley, New York, 2005)

    Google Scholar 

  85. Z. Kiraly, R.H.K. Borner, G.H. Findenegg, Adsorption and Aggregation of C8E4 and C8G1 Nonionic Surfactants on Hydrophilic Silica Studied by Calorimetry. Langmuir 13(13), 3308–3315 (1997). doi:10.1021/la9620768

    Article  CAS  Google Scholar 

  86. S. Partyka, E. Keh, M. Lindheimer, A. Groszek, A new microcalorimeter for the study of solutions, adsorption and suspensions. Colloids Surf. 37, 309–318 (1989). doi:10.1016/0166-6622(89)80127-1

    Article  Google Scholar 

  87. M. Chorro, C. Chorro, O. Dolladille, S. Partyka, R. Zana, Adsorption mechanism of conventional and dimeric cationic surfactants on silica surface: effect of the state of the surface. J. Colloid Interface Sci. 210(1), 134–143 (1999). doi:10.1006/jcis.1998.5936

    Article  CAS  Google Scholar 

  88. R. Chaghi, L.-C. de Ménorval, C. Charnay, G. Derrien, J. Zajac, Interactions of phenol with cationic micelles of hexadecyltrimethylammonium bromide studied by titration calorimetry, conductimetry, and 1H NMR in the range of low additive and surfactant concentrations. J. Colloid Interface Sci. 326(1), 227–234 (2008). doi:10.1016/j.jcis.2008.07.035

    Article  CAS  Google Scholar 

  89. J.L. Trompette, Contribution de la calorimetrie a l’etude de l’interaction tensioactif cationique - solide divise. Ph.D. Thesis (University of Montpellier 2, Montpellier, 1995)

    Google Scholar 

  90. A.J. Groszek, Graphitic and polar surface sites in carbonaceous solids. Carbon 25(6), 717–722 (1987). doi:10.1016/0008-6223(87)90140-0

    Article  CAS  Google Scholar 

  91. A.J. Groszek, S. Partyka, Measurements of hydrophobic and hydrophilic surface sites by flow microcalorimetry. Langmuir 9(10), 2721–2725 (1993)

    Article  CAS  Google Scholar 

  92. K. Szczodrowski, B. Prélot, S. Lantenois, J.-M. Douillard, J. Zajac, Effect of heteroatom doping on surface acidity and hydrophilicity of Al, Ti, Zr-doped mesoporous SBA-15. Microporous Mesoporous Mater. 124(1–3), 84–93 (2009). doi:10.1016/j.micromeso.2009.04.035

    Article  CAS  Google Scholar 

  93. J. Zajac, Mechanism of ionic and zwitterionic surfactant adsorption from dilute solutions onto charged non-porous and porous mineral oxides inferred from thermodynamic studies, in Recent Research Developments in Surface and Colloids, ed. by S.G. Pandalai (Research Signpost, Kerala, 2004), pp. 265–300

    Google Scholar 

  94. S. Lantenois, B. Prélot, J.-M. Douillard, K. Szczodrowski, M.-C. Charbonnel, Flow microcalorimetry: experimental development and application to adsorption of heavy metal cations on silica. Appl. Surface Sci. 253(13), 5807–5813 (2007). doi:10.1016/j.apsusc.2006.12.064

    Article  CAS  Google Scholar 

  95. B. Prelot, S. Lantenois, M.-C. Charbonnel, F. Marchandeau, J.M. Douillard, J. Zajac, What are the main contributions to the total enthalpy of displacement accompanying the adsorption of some multivalent metals at the silica–electrolyte interface? J. Colloid Interface Sci. 396, 205–209 (2013) . doi:10.1016/j.jcis.2012.12.049

    Google Scholar 

  96. B. Prelot, S. Lantenois, C. Chorro, M.-C. Charbonnel, J. Zajac, J.M. Douillard, Effect of nanoscale pore space confinement on cadmium adsorption from aqueous solution onto ordered mesoporous silica: a combined adsorption and flow calorimetry study. J. Phys. Chem. C 115(40), 19686–19695 (2011). doi:10.1021/jp2015885

    Article  CAS  Google Scholar 

  97. J.L. Trompette, J. Zajac, E. Keh, S. Partyka, Scanning of the cationic surfactant adsorption on a hydrophilic silica surface at low surface coverages. Langmuir 10(3), 812–818 (1994)

    Article  CAS  Google Scholar 

  98. R. De Lisi, C. Ostiguy, G. Perron, J.E. Desnoyers, Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water. J. Colloid Interface Sci. 71(1), 147–166 (1979). doi:10.1016/0021-9797(79)90229-7

    Article  Google Scholar 

  99. R. Atkin, V.S.J. Craig, E.J. Wanless, S. Biggs, Mechanism of cationic surfactant adsorption at the solid-aqueous interface. Adv. Colloid Interface Sci. 103(3), 219–304 (2003). doi:10.1016/S0001-8686(03)00002-2

    Article  CAS  Google Scholar 

  100. J.H. Clint, Surfactant Aggregation (Blackie, Glasgow/London, 1992)

    Book  Google Scholar 

  101. R.H. Aranow, L. Witten, The environmental influence on the behavior of long chain molecules. J. Phys. Chem. 64(11), 1643–1648 (1960). doi:10.1021/j100840a010

    Article  CAS  Google Scholar 

  102. H. Hoffmann, Fascinating phenomena in surfactant chemistry. Adv. Mater. 6(2), 116–129 (1994). doi:10.1002/adma.19940060204

    Article  CAS  Google Scholar 

  103. A. Bendjeriou, G. Derrien, P. Hartmann, C. Charnay, S. Partyka, Microcalorimetric studies of cationic gemini surfactant with a hydrophilic spacer group. Thermochim. Acta 434(1–2), 165–170 (2005). doi:10.1016/j.tca.2005.01.034

    Article  CAS  Google Scholar 

  104. L. Grosmaire, M. Chorro, C. Chorro, S. Partyka, R. Zana, Alkanediyl-alpha, omega-bis(dimethylalkylammonium bromide) surfactants - 9. Effect of the spacer carbon number and temperature on the enthalpy of micellization. J. Colloid Interface Sci. 246(1), 175–181 (2002). doi:10.1006/jcis.2001.8001

    Article  CAS  Google Scholar 

  105. M. Pisarcik, M.J. Rosen, M. Polakovicova, F. Devinsky, I. Lacko, Area per surfactant molecule values of gemini surfactants at the liquid-hydrophobic solid interface. J. Colloid Interface Sci. 289(2), 560–565 (2005). doi:10.1016/j.jcis.2005.03.092

    Article  CAS  Google Scholar 

  106. R. Zana, Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J. Colloid Interface Sci. 248(2), 203–220 (2002). doi:10.1006/jcis.2001.8104

    Article  CAS  Google Scholar 

  107. P. Somasundaran, J.T. Kunjappu, In-situ investigation of adsorbed surfactants and polymers on solids in solution. Colloids Surf. 37, 245–268 (1989). doi:10.1016/0166-6622(89)80123-4

    Article  Google Scholar 

  108. P. Somasundaran, D.W. Fuerstenau, Mechanisms of Alkyl Sulfonate Adsorption at the Alumina-Water Interface. J. Phys. Chem. 70(1), 90–96 (1966). doi:10.1021/j100873a014

    Article  CAS  Google Scholar 

  109. M.A. Yeskie, J.H. Harwell, On the structure of aggregates of adsorbed surfactants: the surface charge density at the hemimicelle/admicelle transition. J. Phys. Chem. 92(8), 2346–2352 (1988). doi:10.1021/j100319a048

    Article  CAS  Google Scholar 

  110. H. Rupprecht, T. Gu, Structure of adsorption layers of ionic surfactants at the solid/liquid interface. Colloid Polym. Sci. 269(5), 506–522 (1991). doi:10.1007/bf00655889

    Article  CAS  Google Scholar 

  111. B. Li, E. Ruckenstein, Adsorption of Ionic Surfactants on charged solid surfaces from Aqueous solutions. Langmuir 12(21), 5052–5063 (1996). doi:10.1021/la951559t

    Article  CAS  Google Scholar 

  112. S.D. Christian, J.F. Scamehorn (eds.), Solubilisation in Surfactant Aggregates, Surfactant Science Series, vol. 55 (Marcel Dekker, New York, 1995)

    Google Scholar 

  113. R. Zana, Aqueous surfactant-alcohol systems: a review. Adv. Colloid Interface Sci. 57, 1–64 (1995). doi:10.1016/0001-8686(95)00235-I

    Article  CAS  Google Scholar 

  114. M.J. Meziani, H. Benalla, J. Zajac, S. Partyka, D.J. Jones, Adsorption of a cationic gemini surfactant from aqueous solution onto aluminosilicate powders of the MCM-41 type: effect of pore size and co-adsorption of phenol. J. Colloid Interface Sci. 262(2), 362–371 (2003). doi:10.1016/S0021-9797(03)00204-2

    Article  CAS  Google Scholar 

  115. H. Benalla, J. Zajac, S. Partyka, J. Rozière, Calorimetric study of phenol adsolubilisation by cationic surfactants adsorbed on a flat silica surface or confined within small mesopores of powdered MCM-41 aluminosilicates. Colloids Surf. A Physicochem. Eng. Aspects 203(1–3), 259–271 (2002). doi:10.1016/S0927-7757(01)01109-8

    Article  CAS  Google Scholar 

  116. M.N. Khan, Micellar Catalysis. Surfactant Science Series, vol. 133 (Taylor and Francis Group, Boca Raton, 2006)

    Google Scholar 

  117. C.-C. Yu, L. Lobban Lance, Admicellar catalysis. in Surfactant Adsorption and Surface Solubilization, vol. 615, ACS Symposium Series. American Chemical Society, (1996), pp 67–76. doi:doi:10.1021/bk-1995-0615.ch005.

    Google Scholar 

  118. A.D.W. Carswell, E.A. O’Rea, B.P. Grady, Adsorbed surfactants as templates for the synthesis of morphologically controlled polyaniline and polypyrrole nanostructures on flat surfaces: from spheres to wires to flat films. J. Am. Chem. Soc. 125(48), 14793–14800 (2003). doi:10.1021/ja0365983

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Jozef Zajac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zajac, J.J. (2013). Calorimetry at the Solid–Liquid Interface. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_6

Download citation

Publish with us

Policies and ethics