Skip to main content

Blind Processing Algorithm Based on Probability Density Estimation

  • Chapter
Blind Signal Processing
  • 1762 Accesses

Abstract

Most algorithms for resolving the problems of blind source separation (BSS) and blind deconvolution are mainly focused on blind separation for mixed signals using higher order statistics of random signals, including third-order (for sources with dissymmetrical distribution) and fourth-order cumulant (for sources with symmetrical distribution). Usually, this kind of method directly employs an algebraic structure of a mixed signal cumulant matrix. The common method makes eigenvalues decomposition to the cumulant matrix that is estimated by the mixed signal samples. It can also perform joint diagonalization for the cumulant matrix through complex matrix transformation to estimate the mixing matrix in order to solve the BSS problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardoso J F, Laheld B (1996) Equivariant adaptive source separation. IEEE Transactions on Signal Processing 44(12): 3017–3030

    Article  Google Scholar 

  2. Yu Y (1995) Advanced engineering mathematics, 2nd edn. Huazhong University of Science and Technology Press, Wuhan

    Google Scholar 

  3. Silverman B W (1986) Density estimation for statistics and data analysis. Chapman and Hall, London

    MATH  Google Scholar 

  4. Turlach B A (1993) Bandwidth selection in kernel density estimation: A review. C.O.R.E. and Institut de Statistique, Universite’ Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

    Google Scholar 

  5. Sheather S J, Jones M C (1991) A reliable data-based bandwidth selection method for kernel density estimation. Journal of Royal Statistical Society, Series B 53(3): 683–690

    MathSciNet  MATH  Google Scholar 

  6. Jones M C, Sheather S J (1996) A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association 91(433): 401–407

    Article  MathSciNet  MATH  Google Scholar 

  7. Jones M C, Marron J S, Sheather S J (1996) Progress in data-based bandwidth selection for kernel density estimation. Computational Statistics 11: 337–381

    MathSciNet  MATH  Google Scholar 

  8. Hädel W, Marron J S, Wand M P (1990) Bandwidth choice for density derivatives. Journal of the Royal Statistical Society, Series B 52: 223–232

    Google Scholar 

  9. Fukunaga K, Hostetler L D (1975) The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transaction on Information Theory 21(1): 32–40

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee T W, Girolami M, Sejnowski T J (1999) Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11: 417–441

    Article  Google Scholar 

  11. Haykin S (2000) Unsupervised adaptive filter, Vol.2, Blind source separation. Wiley, New York

    Google Scholar 

  12. Lambert R H, Bell A J (1996) Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixturess. Dissertation, University of Southern California

    Google Scholar 

  13. Zhang H Y (2001) Theoretical and experimental studies of blind source separation. Dissertation, Shanghai Jiao Tong University (Chinese)

    Google Scholar 

  14. Jia P (2001) Study of blind separation of acoustic signal. Dissertation, Shanghai Jiao Tong University (Chinese)

    Google Scholar 

  15. Miller J H, Thomas J B (1972) Detectors for discrete-time signals in nongaussian noise. IEEE Transaction on Information Theory IT-18(2): 241–250

    Article  MATH  Google Scholar 

  16. Lee T W, Lewicki M S (2000) The generalized gaussian mixtures model using ICA. In: International Workshop on Independent Component Analysis (ICA’00), Helsinki, 2000, pp 239–244

    Google Scholar 

  17. Zhao Y X, Zhang X H (1995) Gaussian mixtures density modeling of non-gaussian source for autoregressive process. IEEE Transactions on Signal Processing 43(4): 894–903

    Article  Google Scholar 

  18. Kong W (2005) Research on blind source separation algorithm and its application in acoustic signals. Dissertation, Shanghai Jiao Tong University (Chinese)

    Google Scholar 

  19. Shen X Z (2005) Study of algorithms of second and higher order blind signal processing. Dissertation, Shanghai Jiao Tong University (Chinese)

    Google Scholar 

  20. Stuart A, Ord J K (1994) Kendall’s advanced theory of statistics. Edward Arnold, Lodon

    Google Scholar 

  21. Papoulis A (1985) Probability, random variables, and stochastic processes, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  22. Zhang L Q (2004) Conjugate gradient approach to blind separation of temporally correlated signals. In: Proceedings of International Conference on Communications, Circuits and Systems, Chengdu, 2004, 2 1008–1012

    Google Scholar 

  23. Edelman A, Tomas A, Smith S T (1999) The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis & Applications 20(2): 303–353

    Article  Google Scholar 

  24. Amari S I, Chen T P, Cichocki A (1997) Stability analysis of adaptive blind source separation. Neural Networks 10(8): 1345–1351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shi, X. (2011). Blind Processing Algorithm Based on Probability Density Estimation. In: Blind Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11347-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11347-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11346-8

  • Online ISBN: 978-3-642-11347-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics