Skip to main content

Struktur, Wirkmechanismen und Einsatzgebiete neuer Knochenersatzsubstanzen und Knochenregenerationsmaterialien

  • Chapter
Fortbildung Osteologie

Part of the book series: Fortbildung Osteologie ((FORTOSTEO,volume 3))

Zusammenfassung

Der Einsatz von „Knochenersatzmaterial“ bei der Therapie von Defekten unterschiedlicher Genese, Größe und Form am knöchernen Skelett ist heutzutage eine anerkannte und etablierte Vorgehensweise in der Trauma-, der orthopädischen sowie auch der Mund-, Kiefer-, Gesichtsund der dentalen Chirurgie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abjornson C, Lane JM (2006) Demineralized Bone Matrix and Synthetic Bone Graft Substitutes. In: bone grafts and bone graft substitutes, AAOS, 81–85

    Google Scholar 

  2. Ackerman, SJ et al. (2002) Economic evaluation of bone morphogenetic protein versus autogenous iliac crest bone graft in single—level nterior lumbar fusion. SPINE 27, 167: 94–99

    Article  Google Scholar 

  3. Adler C-P (Hrsg) (2005) Knochenkrankheiten 3. Aufl. Springer Berlin Heidelberg New York Tokio, pp 8–11

    Google Scholar 

  4. Albert T et al. (2007) Biologics in lumbar spine fusion, aaos instructional course (270) Lecture Handout

    Google Scholar 

  5. Attavia M et al. (2003) Cell-based approaches for bone graft substitutes. In: Laurencin, CT (ed). Bone graft substitutes. American Society for Testing & Materials (ASTM), pp 126–141

    Google Scholar 

  6. Bagaria V, Prasada V (2005) Bone morphogenetic protein: current state of field and the road ahead. J Orthod 2(4): e3

    Google Scholar 

  7. Blokhuis, T et al. (2000) Properties of Calcium Phosphate Ceramics in Relation to Their in Vivo Behaviour. The Journal of Trauma, Injury, Infection and Critical care 48(1): 179–186

    Article  CAS  Google Scholar 

  8. Burchardt H (1983) The biology of bone graft repair. Clin Orthop Relat Res 174: 28–42

    PubMed  Google Scholar 

  9. Carvalho RS et al. (2004) The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34: 849–861

    Article  CAS  PubMed  Google Scholar 

  10. Chow KM, Rabie AB (2000) Vascular endothelial growth pattern of enchondral bone graft in presence of demineralized intamembranous bone matrix-quantitative analysis. Cleft Palate Craniofac J 37(4): 385–394

    Article  CAS  PubMed  Google Scholar 

  11. De Boer HH (1988) The history of bone grafts. Clin Orthop Relat Res 226: 292–298

    PubMed  Google Scholar 

  12. Dowell TA, Hay Ph et al (1968) Inductive substrates for bone formation. Clin Orthop 59: 59–96

    PubMed  Google Scholar 

  13. Finkemeier CG (2002) Bone grafting and bone — graft substitutes. J Bone Joint Surg 84: 454–464

    PubMed  Google Scholar 

  14. Friedlaender GE et al. (2006): Bone graft decision making. In: Bone grafts and bone graft substitutes. American Academy of Orthopaedic Surgeons (AAOS) Monograph Series 32, Rosemont Il, USA, pp 81–85

    Google Scholar 

  15. Goulet JA et al. (1997) Autogenous iliac crest bone graft: complications and functional assessment. Clin Orthop Relat Res 339: 76–81

    Article  PubMed  Google Scholar 

  16. Greenwald AS et al. (2007) Bone graft substitutes: facts, fictions & applications. American Academy of Orthopaedic Surgeons (AAOS), San Diego, California, USA

    Google Scholar 

  17. Hendrich C, Frommelt L, Eulert J (2004) Septische Knochen-und Gelenkchirurgie. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  18. Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Phil Trans R Soc Lond A 362: 2821–2850

    Article  CAS  Google Scholar 

  19. Hyatt, GW (1950): Fundamentals in the use and preservation of homogenous bone. US Armed Forces Med J 1950: 841–852

    Google Scholar 

  20. Hyun WB et al. (2006) Intervariability of bone mrphogenetic proteins in comercially available demineralized bone matrix products. Spine 31(12): 1299–1306

    Article  Google Scholar 

  21. Implantologie Journal 4/2008 und 1/2009, Oemus, Leipzig

    Google Scholar 

  22. John St, Thomas A et al. (2003) Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop 32(1): 18–23

    Google Scholar 

  23. Kakar S, Einhorn T (2006) The role of bone morphogenetic proteins in skeletal repair. In: Friedlaender GE, Mankin HJ, Goldberg (eds). Bone grafts and bone graft substitutes. Monograph Series 32, AAOS: 2132

    Google Scholar 

  24. Kübler, NR (2002) Osteoinduktion: Ein Beispiel für die Differenzierung mesenchymaler Stammzellen durch Bone Morphogenetic Proteins (BMP’s). Jahrbuch Heinrich-Heine-Universität Düsseldorf

    Google Scholar 

  25. Laurencin C, Khan Y (2003) Bone grafts and bone graft substitutes: a brief history. In: Laurencin, CT (ed). Bone graft substitutes. American Society for Testing & Materials (ASTM) pp 3–7

    Google Scholar 

  26. Lynch S (2005) In: Lieberman J, Friedlaender G (eds) Bone Reneration and Repair, p 385

    Google Scholar 

  27. Lynn AK et al. (2004) Antigenicity and Immunogenicity of Collagen. J Biomed Mater Res Part B: Appl Biomater 71B: 343–354

    Article  CAS  Google Scholar 

  28. Müller Mai C (2003) Bioaktive Granulate in der Unfallchirurgie. In: VNM Science Publishing

    Google Scholar 

  29. Oakes DA et al. (2003) An evaluation of human demineralized bone matrices in a rat femoral defekt model. Clin Orthop Relat Res 413: 281–290

    Article  PubMed  Google Scholar 

  30. Pacicca DM et al. (2003) Expression of angiogenic factors during distraction osteogenesis. Bone 33: 889–898

    Article  CAS  PubMed  Google Scholar 

  31. Parikh SN (2002) Bone graft substitutes: Past, Present, Future. J Postgrad Med 48: 142–148

    CAS  PubMed  Google Scholar 

  32. Péan JE (1894) De moyens prosthetiques destines a obtenir la reparation de parties osseuses, Gaz de Hôp 67, Paris 1894. Reprinted in Clin Orthop Relat Res 1973, pp 291–302

    Google Scholar 

  33. Reddi AH (1998) Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop and Rel Res 355S: 66–72

    Article  Google Scholar 

  34. Rueger JM (1998) Knochenersatzmaterial, Heutiger Stand und Ausblick. Der Orthopäde 2: 72–79

    Google Scholar 

  35. Sampath TK, Reddi AH (2003). In: Laurencin CT (ed) Bone Graft Substitutes, ASTM, p 207

    Google Scholar 

  36. Sanan A, Haines SJ (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3): 588–603

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt KH, Swoboda H (1995) Die Bedeutung matrixgebundener Zytokine für die Osteoinduktion und Osteogenese. Implantologie 2: 127–148

    Google Scholar 

  38. Schnürer SM et al. (2003) Knochenersatzwerkstoffe. Der Orthopäde 1: 1–9

    Article  Google Scholar 

  39. Seiler JG, Johnson J (2000) Iliac crest aotogenous bone grafting: donor side complications. Journal South Ortop Assoc 9: 91–97

    Google Scholar 

  40. Sfeir C et al. (2005) Fracture repair. In: Lieberman, JR, Friedlaender GE (eds). Bone regeneration and repair. Totowa, New Jersey

    Google Scholar 

  41. Shields LBE et al. (2006) Adverse effects associated with highdose recombinant human bone morphogenetic Protein-2, use in anterior cervical spine fusion. Spine 31(5): 542–547

    Article  PubMed  Google Scholar 

  42. Sun W (2007) Porous silicon based biomaterials for bone tissue engineering dissertation. University of Rochester, New York

    Google Scholar 

  43. Sutherland D, Bostrom M (2005) In: Lieberman J, Friedlaender G (eds) Bone Reneration and Repair, p 133

    Google Scholar 

  44. Urist MR, Silverman B, Burning K et al (1967) The bone induction principle. Clin Orthop 53: 243–283

    CAS  PubMed  Google Scholar 

  45. Urist MR (1965) Bone: formation by autoinduction. Science 150: 893–899

    Article  CAS  PubMed  Google Scholar 

  46. Walenkamp G (ed) (2007) Local antibiotics. In: Arthroplasty. Thieme, Stuttgart

    Google Scholar 

  47. Wolff J (1863) Die Osteoplastik in ihren Beziehungen zur Chirurgie und Physiologie. Arch Klin Chir 4: 183–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bösebeck, H., Büchner, H. (2010). Struktur, Wirkmechanismen und Einsatzgebiete neuer Knochenersatzsubstanzen und Knochenregenerationsmaterialien. In: Fortbildung Osteologie. Fortbildung Osteologie, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05385-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05385-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05384-9

  • Online ISBN: 978-3-642-05385-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics