Skip to main content

Modal Logics for Preferences and Cooperation: Expressivity and Complexity

  • Conference paper
Knowledge Representation for Agents and Multi-Agent Systems (KRAMAS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5605))

Abstract

This paper studies expressivity and complexity of normal modal logics for reasoning about cooperation and preferences. We identify a class of local and global notions relevant for reasoning about cooperation of agents that have preferences. Many of these notions correspond to game- and social choice-theoretical concepts. We specify the expressive power required to express these notions by determining whether they are invariant under certain relevant operations on different classes of Kripke models and frames. A large class of known extended modal languages is specified and we show how the chosen notions can be expressed in fragments of this class. To determine how demanding reasoning about cooperation is in terms of computational complexity, we use known complexity results for extended modal logics and obtain for each local notion an upper bound on the complexity of modal logics expressing it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauly, M.: A modal logic for coalitional power in games. JLC 12(1), 149–166 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Broersen, J., Herzig, A., Troquard, N.: Normal Coalition Logic and its conformant extension. In: Samet, D. (ed.) TARK 2007, PUL, pp. 91–101 (2007)

    Google Scholar 

  3. Girard, P.: Modal Logic for Preference Change. PhD thesis, Stanford (2008)

    Google Scholar 

  4. Kurzen, L.: Logics for Cooperation, Actions and Preferences. Master’s thesis, Universiteit van Amsterdam, The Netherlands (2007)

    Google Scholar 

  5. Ågotnes, T., Dunne, P.E., van der Hoek, W., Wooldridge, M.: Logics for coalitional games. In: LORI 2007, Beijing, China (2007) (to appear)

    Google Scholar 

  6. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. In: Proceedings of the 38th IEEE Symposium on Foundations of Computer Science, Florida (October 1997)

    Google Scholar 

  7. Goranko, V.: Coalition games and alternating temporal logics. In: TARK 2001, pp. 259–272. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  8. Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. de Jongh, D., Liu, F.: Optimality, belief and preference. In: Artemov, S., Parikh, R. (eds.) Proc. of the Workshop on Rationality and Knowledge, ESSLLI (2006)

    Google Scholar 

  10. Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)

    Google Scholar 

  11. Cate, B.: Model theory for extended modal languages. PhD thesis, University of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)

    Google Scholar 

  12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, UK (2001)

    MATH  Google Scholar 

  13. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Napoli (1983)

    Google Scholar 

  14. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. The Journal of Symbolic Logic 66(3), 977–1010 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Feferman, S.: Persistent and invariant formulas for outer extensions. Compositio Mathematica 20, 29–52 (1969)

    MathSciNet  Google Scholar 

  16. Goldblatt, R.I., Thomason, S.K.: Axiomatic classes in propositional modal logic. In: Crossley, J.N. (ed.) Algebra and Logic: Papers 14th Summer Research Inst. of the Australian Math. Soc. LNM, vol. 450, pp. 163–173. Springer, Berlin (1975)

    Google Scholar 

  17. Dégremont, C., Kurzen, L.: Modal logics for preferences and cooperation: Expressivity and complexity. ILLC PP-2008-39, University of Amsterdam (2008), http://staff.science.uva.nl/~cdegremo/

  18. Papadimitriou, C.M.: Computational complexity. Addison-Wesley, MA (1994)

    MATH  Google Scholar 

  19. Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. (125). North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  20. Harel, D.: Recurring dominoes: making the highly undecidable highly understandable. In: Topics in the theory of computation, New York, NY, USA, pp. 51–71. Elsevier, Amsterdam (1985)

    Google Scholar 

  21. Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. (1979)

    Google Scholar 

  23. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54(3), 319–379 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Franceschet, M., de Rijke, M.: Model checking for hybrid logics. In: Proceedings of the Workshop Methods for Modalities (2003)

    Google Scholar 

  26. Gurevich, Y.: The classical decision problem. In: Perspectives in Mathematical Logic. Springer, Heidelberg (1997)

    Google Scholar 

  27. Lutz, C., Sattler, U.: The complexity of reasoning with boolean modal logics. In: Wolter, W., de Rijke, Z. (eds.) AiML, WS, pp. 329–348 (2000)

    Google Scholar 

  28. Lange, M.: Model checking pdl with all extras. J. Applied Logic 4(1), 39–49 (2006)

    Article  MATH  Google Scholar 

  29. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to semistructured data). J. Applied Logic 4(3), 279–304 (2006)

    Article  MATH  Google Scholar 

  30. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. In: KR, pp. 151–162 (1991)

    Google Scholar 

  31. Spaan, E.: Complexity of modal logics. PhD thesis, ILLC Amsterdam (1993)

    Google Scholar 

  32. Hemaspaandra, E.: The price of universality. NDJFL 37(2), 174–203 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  34. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: STOC 1982: Proceedings of the fourteenth annual ACM symposium on Theory of computing, pp. 137–146. ACM, New York (1982)

    Chapter  Google Scholar 

  35. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Quantified coalition logic. In: Veloso, M.M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), California, pp. 1181–1186. AAAI Press, Menlo Park (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dégremont, C., Kurzen, L. (2009). Modal Logics for Preferences and Cooperation: Expressivity and Complexity. In: Meyer, JJ.C., Broersen, J. (eds) Knowledge Representation for Agents and Multi-Agent Systems. KRAMAS 2008. Lecture Notes in Computer Science(), vol 5605. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05301-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05301-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05300-9

  • Online ISBN: 978-3-642-05301-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics