Skip to main content

Entwicklung umweltverträglicher Schmierstoffe

  • Chapter
  • First Online:
Umweltverträgliche Tribosysteme
  • 4513 Accesses

Zusammenfassung

Die wichtigste Aufgabe eines Schmierstoffes ist es, die Reibung zwischen beweglichen Bauteilen und somit deren Verschleiß zu verringern. Die dadurch mögliche Einsparung von Energie ist gerade in der heutigen Zeit, in der Energie und Rohstoffe zunehmend als limitierende Ressourcen angesehen werden, von großer Bedeutung. Gleichzeitig werden Umweltaspekte wie Ökotoxizität und biologische Abbaubarkeit zunehmend wichtiger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jens Langanke und Walter Leitner

Quellenverzeichnis

  1. Angus S., Armstrong B., de Reuck K.M. (Hrsg.) (1976) International Thermodynamic Tables of Fluid State-3:Carbon Dioxide, IUPAC, Pergamon Press, Oxford, UK

    Google Scholar 

  2. Bäckvall J.-E. (2004) Modern Oxidation Methods, Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  3. Baiker A. (1999) Supercritical fluids in heterogeneous catalysis, Chem. Rev., 99 (2), 453–473

    Article  Google Scholar 

  4. Shahidi F. (Hrsg.) (2005) Bailey’s Industrial Oil & Fat Products, Volume 1, S. 1–39, John Wiley, New York, USA

    Google Scholar 

  5. Behr A., Westfechtel A., Gomes J.P. (2008) Catalytic processes for the technical use of natural fats and oils, Chem. Eng. Technol., 31 (5), 700–714

    Article  Google Scholar 

  6. Bridgeman P.W. (1914) Change of phase under pressure. I. The phase diagram of eleven substances with especial reference to the melting curve, Phys. Rev., 3, 153–203

    Google Scholar 

  7. Brinkmann C. (2006) Wirkungsbezogene und chemisch-analytische Untersuchungen als Beitrag zur Qualitätssicherung von Schmierfluiden, Akademische Edition Umweltforschung, Hrsg.: A. Eisenträger, Shaker Verlag, Aachen, Deutschland, Band 30

    Google Scholar 

  8. Caló V., Nacci A., Monopoli A., et al. (2002) Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts, Org. Lett., 4, 2561–2563

    Google Scholar 

  9. Corma A., Iborra S., Velty A. (2007) Chemical routes for the transformation of biomass into chemicals, Chem. Rev., 107 (8), 2411–2502

    Google Scholar 

  10. Cornils B., Herrmann W.A., Horváth I.T., et al. (2005) Multiphase Homogeneous Catalysis, Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  11. Dewees T.G., Knafelc F.M., Mitchell J.D., et al. (1993) Liquid/supercritical carbon dioxide dry cleaning system, US Patent 5267455

    Google Scholar 

  12. DFG Einheitsmethode (1998) Fettsäuremethylester: Alkalische Umesterung, Abteilung C-Fette, C-VI 11d

    Google Scholar 

  13. DIN 38412 L37 (1991a) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Testverfahren mit Wasserorganismen (Gruppe L), Teil 37: Bestimmung der Hemmwirkung von Wasser auf das Wachstum von Bakterien (Photobacterium phosphoreum – Zellvermehrungs-Hemmtest), Deutsches Institut für Normung e. V., Beuth Verlag GmbH, Berlin

    Google Scholar 

  14. DIN 38412 L33 (1991b) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Bestimmung der nicht giftigen Wirkung von Abwasser gegenüber Grünalgen (Scenedesmus-Chlorophyll-Fluoreszenztest) über Verdünnungsstufen, Deutsches Institut für Normung e. V., Beuth Verlag GmbH, Berlin

    Google Scholar 

  15. DIN EN 1484, Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC), Deutsches Institut für Normung e.V., Beuth Verlag GmbH, Berlin

    Google Scholar 

  16. DIN 38412 L37 (1999) Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Testverfahren mit Wasserorganismen (Gruppe L), Teil 37: Bestimmung der Hemmwirkung von Wasser auf das Wachstum von Bakterien (Photobacterium phosphoreum   Zellvermehrungs-Hemmtest), Deutsches Institut für Normung e.V., Beuth Verlag GmbH, Berlin

    Google Scholar 

  17. Dinjus E., Formika R., Scholy M. (1996) Chemistry Under Extreme or Non-Classical Conditions, Hrsg.: R. van Eldik, C.D. Hibbard, Wiley VCH, New York, USA, 219–271

    Google Scholar 

  18. Doll K.M., Erhan S.Z. (2005) Synthesis of carbonated fatty methyl esters using supercritical carbon dioxide, J. Agric. Food. Chem., 53, 9608–9614

    Article  Google Scholar 

  19. Dunford N.T., King J.W. (2000) Phytosterol enrichment of rice bran oil by a supercritical carbon dioxide fractionation technique, J. Food Sci., 65 (8), 1395–1399

    Article  Google Scholar 

  20. Eggers R. (1994) Extraktion von Fettrohstoffen mit überkritischem CO2, Fat Sci. Technol., 96 (S2), 513–518

    Google Scholar 

  21. Eichholz S. (2007) Prozessorientierte Untersuchungen zur Schmierstoffsynthese basierend auf Ölsäuremethylester und Glycerintrioleat, Dissertationsschrift, Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  22. Erlenkämper B. (2008) Synthesebegleitende Optimierung der Umweltverträglichkeit biogener Öle, Akademische Edition Umweltforschung, Hrsg.: A. Eisenträger, Shaker Verlag, Aachen, Deutschland, Band 41

    Google Scholar 

  23. Finney D.J. (1964) Probit Analysis, University Press, Cambridge, MA, USA

    Google Scholar 

  24. Fujiwara M., Baba A., Matsuda H. (1989) The cycloaddition of heterocumulenes to oxetanes in the presence of catalytic amounts of tetraphenylstibonium iodide, J. Heterocycl. Chem., 26, 1659–1663

    Google Scholar 

  25. Gallezot P. (2008) Catalytic conversion of biomass: Challenges and issues, ChemSusChem., 1 (8–9), 734–737

    Google Scholar 

  26. Girling A.E. (1989) Preparation of aqueous media for aquatic toxicity testing of oils and oil-based products: a review of the published literature, Chemosphere, 19 (10–11), 1635–1641

    Article  Google Scholar 

  27. Girling A.E., Markarian R.K., Bennett D. (1992) Aquatic toxicity testing of oil products – some recommendations, Chemosphere, 24, 1469–1472

    Article  Google Scholar 

  28. Girling A.E., Whale G.F. (1994) A guideline supplement for determining the aquatic toxicity of poorly water soluble complex mixtures using water-accomodated fractions, Chemosphere, 29 (12), 2645–2649

    Article  Google Scholar 

  29. Gunstone F. (2009) www.lipidlibrary.co.uk/ market/index.html

    Google Scholar 

  30. Hahn S., Eisenträger A. (2005) Application of an O2/CO2-headspace test with GC-TCD for biodegradability testing of synthetic ester lubricants in water and soil, Hrsg.: A.R. Burk, Water Pollution: New Research, Nova Science Publishers Inc, New York, USA

    Google Scholar 

  31. Härröd Research AB (2009) http://www.harrod-research.se

    Google Scholar 

  32. Hengstler J.G., Foth H., Kahl R., et al. (2006) The REACH concept and its impact on toxicological sciences, Toxicology 220, 232–239

    Google Scholar 

  33. Hildebrand J.H., Scott R.L. (1950) The Solubility of Nonelectrolytes, Reinhold, New York, USA

    Google Scholar 

  34. Hinman M.L. (2003) Environmental characteristics of fuels and lubricants, Hrsg.: G.E. Totten, et al. Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, American Society for Testing & Materials (ASTM), West Conshohocken, PA, USA, S. 885–908

    Google Scholar 

  35. Hobbs H.R., Thomas N.R. (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions, Chem. Rev., 107 (6), 2786–2820

    Article  Google Scholar 

  36. Hölderich W.F. (2001) WO 01/53438 A1, Synthetic lubricants and hydraulic fluids prepared by electrophilic addition of carboxylic acids to unsaturated fatty acids or esters

    Google Scholar 

  37. Hölderich W.F., Rios L.A., Weckes P., et al. (2003) Novel lubricating oils and hydraulic fluids from unsaturated fatty acids and fatty acid esters followed by epoxy-ketone rearrangement, DE 10212593 A1, 24.7

    Google Scholar 

  38. ISO 13829 (2000) Water quality – Determination of the genotoxicity of water and waste water using the umu-test, International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  39. ISO 8692 (2004) Water quality – Fresh water algal growth inhibition test with unicellular green algae, International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  40. ISO 6341 (1996) Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustaceae) – Acute toxicity test, International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  41. ISO 10708 (1997) Water quality – Evaluation in an aqueous medium of the ultimate aerobic biodegradability of organic compounds-method by determining the biochemical oxygen demand in a two-phase closed bottle test, International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  42. ISO 11348-1 (1998) Water quality – Determination of the inhibitiory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 1: Method using freshly prepared bacteria, International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  43. ISO 14593 (1999) Water quality – Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium – Method by analysis of released inorganic carbon in sealed vessels (CO2-Headspacetest), International Organisation for Standardization, Genf, Switzerland

    Google Scholar 

  44. van den Hark S., Härröd M., Møller P. (1999) Hydrogenation of fatty acid methyl esters to fatty alcohols at supercritical conditions, J. Am. Oil Chem. Soc., 76, 1363–1370

    Article  Google Scholar 

  45. van den Hark S., Härröd M., Møller P. (2001) Hydrogenation of oleochemicals at supercritical single-phase condtions: Influence of hydrogen and substrate concentrations on the process, Appl. Catal. A, 210 (1–2), 207–215

    Google Scholar 

  46. Jessop P.G. (2007) Handbook of Homogeneous Hydrogenation, Hrsg.: J.G. De Vries, C.J. Elsevier, Wiley-VCH, Weinheim, Germany, 489–511

    Google Scholar 

  47. Jessop P.G., Leitner W. (Hrsg.) (1999a) Chemicals Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim, Germany

    Google Scholar 

  48. Jessop P.G., Ikariya T., Noyori R. (1999b) Homogeneous Catalysis in Supercritical Fluids, Chem. Rev., 99, 475–493

    Article  Google Scholar 

  49. Karmee S.K., Casiraghi L., Greiner L. (2008) Technical aspects of biocatalysis in non-CO2-based supercritical fluids, Biotechnol. J., 3 (1), 104–111

    Google Scholar 

  50. Klein J. (2002) Statistische Betrachtungen der toxikologischen Richtgrößen des Wachstumshemmtests mit Desmodesmus subspicatus, Diplomarbeit am Institut für Hygiene und Umweltmedizin des Universitätsklinikums der RWTH Aachen

    Google Scholar 

  51. Köckritz A., Martin A. (2008a) Oxidation of unsaturated fatty acid derivatives and vegetable oils, Eur. J. Lipid Sci. Technol., 110 (9), 812–824

    Article  Google Scholar 

  52. Köckritz A., Blumenstein M., Martin A. (2008b) Epoxidation of methyl oleate with molecular oxygen in the presence of aldehydes, Eur. J. Lipid Sci. Technol., 110, 581–586

    Article  Google Scholar 

  53. Kruse A., Vogel H. (2008) Heterogeneous catalysis in supercritical media: 1. carbon dioxide, Chem. Eng. Technol., 31 (1), 23–32

    Google Scholar 

  54. Langanke J., Leitner W. (2008) Regulated Systems for Multiphase Catalysis, Hrsg.: W. Leitner, M. Hölscher, Springer-Verlag, Berlin Heidelberg, Germany, 23, 91–108

    Chapter  Google Scholar 

  55. Leitner W. (1995) Carbon dioxide as a raw material: The synthesis of formic acid and its derivatives from CO2, Angew. Chem., 107 (20), 2391–2405

    Google Scholar 

  56. Leitner W., Loeker F. (2000) VERFAHREN ZUR HERSTELLUNG VON EPOXIDEN DE Patent 19915903A1

    Google Scholar 

  57. Leitner W. (2002) Supercritical carbon dioxide as a green reaction medium for catalysis, Acc. Chem. Res., 35 (9), 746–756

    Google Scholar 

  58. Leitner W. (2003) Catalysis: A greener solution, Nature, 423, 930–931

    Article  Google Scholar 

  59. Loeker F., Leitner W. (2000) Steel-Promoted oxidation of olefins in supercritical carbon dioxide using dioxygen in the presence of aldehydes, Chem. Eur. J., 6 (11), 2011–2015

    Article  Google Scholar 

  60. Maier H. (2009) Chemisch-analytische Charakterisierung esterbasierter Schmierfluide, Akademische Edition Umweltforschung, Hrsg.: A. Eisenträger, Shaker Verlag, Aachen, Deutschland, Band 43

    Google Scholar 

  61. Mang T. (2007) Lubricants and Lubrication, 2nd Edition, S. 1 ff, Wiley-VCH, Weinheim, Germany

    Google Scholar 

  62. Maxam G. (2003) Screening der wässrig extrahierbaren Toxizität zur Optimierung von Schmierfluiden auf Basis synthetischer Ester, Akademische Edition Umweltforschung, Hrsg.: W. Dott, Shaker Verlag, Aachen, Deutschland, Band 24

    Google Scholar 

  63. Méo Consulting team (2006) www.bioschmierstoffe.info FNR

    Google Scholar 

  64. Müller D. (2009) Rationelle Prozessentwicklung für kontinuierliche Synthesen, RWTH Aachen

    Google Scholar 

  65. Nikolau B.J., Perera M.A.D.N., Brachova L., et al. (2008) Platform biochemicals for a biorenewable chemical industry, Plant. J., 54 (4), 536–545

    Article  Google Scholar 

  66. OECD 301 (1992) OECD Guidelines for the Testing of Chemicals, 301: Ready Biodegradability, Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  67. OECD 23 (2000a) Guidance Document on Aquatic Toxicity Testing of Difficult substances and Mixtures. OECD Series on Testing and Assessment, Number 23, Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  68. OECD 202 (2000b) OECD Guidelines for the Testing of Chemicals, 202: Daphnia sp. Acute Immobilisation Test, Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  69. OECD 310 (2001) OECD Guidelines for Testing of Chemicals – Proposal for a New Guideline 301: Ready Biodegradability – CO2 in Sealed Vessels (Headspace Test). Draft Document October 2001, Organisation for Economic Co-operation and Development (OECD), Paris

    Google Scholar 

  70. Perrut M. (2000) Supercritical fluid applications: Industrial developments and economic issues. Ind. Eng. Chem. Res., 39 (12), 4531–4535

    Article  Google Scholar 

  71. Perrut M., Clavier J.-Y. (2003) Supercritical Fluid formulation: Process choice and scale-up, Ind. Eng. Chem. Res., 42 (25), 6375–6383

    Article  Google Scholar 

  72. Peters M., Müller T., Leitner W. (2009) CO2 – from waste to value, Chem. Eng., 813, 46–47

    Google Scholar 

  73. Peters M., Langanke J., Leitner W. (2010) Catalysis in and with Carbon Dioxide – Current Trends and Recent Examples, Hrsg: W. Reschetilowski, W. Hönle, VWB Verlag für Wissenschaft und Bildung, Berlin, 53–79

    Google Scholar 

  74. Rüsch M. gen. Klaas M., Warwel S. (1999) Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis, Ind. Crops Prod., 9 (2), 125–132

    Google Scholar 

  75. Sakakura T., Choi J.-C., Yasuda H. (2007) Transformation of Carbon Dioxide, Chem. Rev., 107 (6), 2365–2387

    Article  Google Scholar 

  76. Sakakura T., Kohno K. (2009) The synthesis of organic carbonates from carbon dioxide, Chem. Commun., 1312–1330

    Google Scholar 

  77. Schneider M.P. (2006) Plant-oil-based lubricants and hydraulic fluids, J. Sci. Food. Agric. 86 (12), 1769–1780

    Article  Google Scholar 

  78. Scurto A.M., Leitner W. (2006) Expanding the useful range of ionic liquids: melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions, Chem. Commun., 3681–3683

    Google Scholar 

  79. Sihvonen M., Järvenpää E., Hietaniemi V., et al. (1999) Advances in supercritical carbon dioxide technologies: Phase Equilibrium and morphology study, Trends Food Sci. Technol., 10 (6), 217–222

    Article  Google Scholar 

  80. Singer M.M., Aurand D., Bragin G.E., et al. (2000) Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing, Mar. Pollut. Bull., 40 (11), 1007–1016

    Article  Google Scholar 

  81. Taylor L.T. (2009) Supercritical fluid chromatography for the 21st century, J. Supercrit. Fluids, 47 (3), 566–573

    Article  Google Scholar 

  82. Theyssen N. (2006) Multiphase Homogeneous Catalysis, Hrsg.: B. Cornils, W.A. Herrmann, I.T. Horváth, W. Leitner, S. Mecking, H. Olivier-Bourbigou, D. Vogt, 2, S. 630–641, Wiley-VCH, Weinheim, Deutschland

    Google Scholar 

  83. Thomas Swan & Co. Ltd. (2009) http://www.thomas-swan.co.uk

  84. Tsunetake S., Baiker A. (2009) Catalytic oxidations in dense carbon dioxide, Chem. Rev., 109 (6), 2409–2454

    Article  Google Scholar 

  85. Tsvetnenko Y., Evans L. (2002) Improved approaches to ecotoxicity testing of petroleum products, Mar. Pollut. Bull., 45 (1–12), 148–156

    Article  Google Scholar 

  86. Ueda T., Kotsuki H. (2008) Heteropoly acids: Green chemical catalysts in organic synthesis, heterocycles, 76 (1), 73–97

    Article  Google Scholar 

  87. VwVwS (Verwaltungsvorschrift wassergefährdende Stoffe) (2005) Allgemeine Verwaltungsvorschrift zum Wasserhaushaltsgesetz über die Einstufung wassergefährdender Stoffe in Wassergefährdungsklassen, Bundesanzeiger 142a

    Google Scholar 

  88. van Wasen U., Swaid I., Schneider G.M. (1980) Physicochemical principles and applications of supercritical fluid chromatography (SFC). New analytical methods, Angew. Chem. Int. Ed. Engl., 19 (8), 575–587

    Article  Google Scholar 

  89. Wan P.J. (1991) Introduction to Fats and Oils Technology, S. 1–3, American Oil Chemists’ Society, Illinois, USA

    Google Scholar 

  90. Yasuda H., He L.-N., Sakakura T., et al. (2005) Efficient synthesis of cyclic carbonate from carbon dioxide catalyzed by polyoxometalate: the remarkable effects of metal substitution, J. Catal., 233 (1), 119–122

    Article  Google Scholar 

  91. Yu K.M.K., Curic I., Gabriel J., et al. (2008) Recent advances in CO2 capture and utilization, ChemSusChem., 1 (11), 893–899

    Article  Google Scholar 

  92. Zacchi P., Eggers R. (2008) Anreicherung von Minor- Komponenten in Speiseölen mit überkritischem Kohlendioxid, Chem. Ing. Tech., 80, 1147–115

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubertus Murrenhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murrenhoff, H. (2010). Entwicklung umweltverträglicher Schmierstoffe. In: Murrenhoff, H. (eds) Umweltverträgliche Tribosysteme. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04997-2_3

Download citation

Publish with us

Policies and ethics