Skip to main content

Approximability of Sparse Integer Programs

  • Conference paper
Algorithms - ESA 2009 (ESA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5757))

Included in the following conference series:

Abstract

The main focus of this paper is a pair of new approximation algorithms for sparse integer programs. First, for covering integer programs { min cx: Ax ≥ b, 0 ≤ x ≤ d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A, b, c, d are nonnegative.) For any k ≥ 2 and ε> 0, if P ≠ NP this ratio cannot be improved to k − 1 − ε, and under the unique games conjecture this ratio cannot be improved to k − ε. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs { max cx:Ax ≤ b, 0 ≤ x ≤ d} where A has at most k nonzeroes per column, we give a 2k k 2-approximation algorithm. This is the first polynomial-time approximation algorithm for this problem with approximation ratio depending only on k, for any k > 1. Our approach starts from iterated LP relaxation, and then uses probabilistic and greedy methods to recover a feasible solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenstra, H.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005); Preliminary version appeared in Proc. 35th STOC, pp. 595–601 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. J. Comput. Syst. Sci. 74(3), 335–349 (2008); Preliminary version appeared in Proc. 18th CCC, pp. 379–386 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hochbaum, D.S.: Approximation algorithms for set covering and vertex cover problems. SIAM J. Comput. 11, 555–556 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bar-Yehuda, R., Even, S.: A linear time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2, 198–203 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hall, N.G., Hochbaum, D.S.: A fast approximation algorithm for the multicovering problem. Discrete Appl. Math. 15(1), 35–40 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Math. Program. 62(1), 69–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two variables per constraint. Algorithmica 29(4), 595–609 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proc. 11th SODA, pp. 106–115 (2000)

    Google Scholar 

  10. Fujito, T., Yabuta, T.: Submodular integer cover and its application to production planning. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 154–166. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Koufogiannakis, C., Young, N.E.: Greedy degree-approximation algorithm for covering with arbitrary constraints and submodular cost. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. Part I. LNCS, vol. 5555, pp. 634–652. Springer, Heidelberg (2009) arXiv:0807.0644

    Google Scholar 

  12. Pritchard, D.: Approximability of sparse integer programs (2009) arXiv:0904.0859

    Google Scholar 

  13. Shepherd, F.B., Vetta, A.: The demand-matching problem. Mathematics of Operations Research 32(3), 563–578 (2007); Preliminary version appeared in Proc. 9th IPCO, pp. 457–474, (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chekuri, C., Mydlarz, M., Shepherd, F.B.: Multicommodity demand flow in a tree and packing integer programs. ACM Trans. Algorithms 3(3), 27 (2007); Preliminary version appeared in Proc. 30th ICALP, pp. 410–425 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw free graphs. Nordic J. of Computing 7(3), 178–184 (2000); Preliminary version appeared in Proc. 7th SWAT, pp. 214–219 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discret. Math. 2(1), 68–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Comput. Complex. 15(1), 20–39 (2006); Preliminary versions appeared in Proc. 6th APPROX, pp. 83–97 (2003); ECCC-TR03-020 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Singh, M.: Iterative Methods in Combinatorial Optimization. PhD thesis, Carnegie Mellon University (2008)

    Google Scholar 

  19. Srinivasan, A.: Improved approximation guarantees for packing and covering integer programs. SIAM J. Comput. 29(2), 648–670 (1999); Preliminary version appeared in Proc. 27th STOC, pp. 268–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Srinivasan, A.: An extension of the Lovász Local Lemma, and its applications to integer programming. SIAM J. Comput. 36(3), 609–634 (2006); Preliminary version appeared in Proc. 7th SODA, pp. 6–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proc. 33rd STOC, pp. 453–461 (2001)

    Google Scholar 

  23. Hochbaum, D.S.: Monotonizing linear programs with up to two nonzeroes per column. Oper. Res. Lett. 32(1), 49–58 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. In: Proc. 49th FOCS, pp. 687–696 (2008)

    Google Scholar 

  25. Khot, S., Ponnuswami, A.K.: Better inapproximability results for maxClique, chromatic number and min-3Lin-deletion. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 226–237. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  27. Magazine, M.J., Chern, M.S.: A note on approximation schemes for multidimensional knapsack problems. Math. of Oper. Research 9(2), 244–247 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolsey, L.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolliopoulos, S.G., Stein, C.: Improved approximation algorithms for unsplittable flow problems. In: Proc. 38th FOCS, pp. 426–436 (1997)

    Google Scholar 

  30. Könemann, J., Parekh, O., Pritchard, D.: Max-weight integral multicommodity flow in spiders and high-capacity trees. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 1–14. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pritchard, D. (2009). Approximability of Sparse Integer Programs. In: Fiat, A., Sanders, P. (eds) Algorithms - ESA 2009. ESA 2009. Lecture Notes in Computer Science, vol 5757. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04128-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04128-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04127-3

  • Online ISBN: 978-3-642-04128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics