Assessment of Cognitive Neural Correlates for a Functional Near Infrared-Based Brain Computer Interface System

  • Hasan Ayaz
  • Patricia A. Shewokis
  • Scott Bunce
  • Maria Schultheis
  • Banu Onaral
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5638)

Abstract

Functional Near Infrared Spectroscopy (fNIR) is a promising brain imaging technology that relies on optical techniques to detect changes of hemodynamic responses within the prefrontal cortex in response to sensory, motor, or cognitive activation. fNIR is safe, non-invasive, affordable, and highly portable. The objective of this study is to determine if biomarkers of neural activity generated by intentional cognitive activity, as measured by fNIR, can be used to communicate directly from the brain to a computer. A bar-size-control task based on a closed-loop system was designed and tested with 5 healthy subjects across two days. Comparisons of the average task and rest period oxygenation changes are significantly different (p<0.01). The average task completion time (reaching +90%) decreases with practice: day1 (mean 52.3 sec) and day2 (mean 39.1 sec). These preliminary results suggest that a closed-loop fNIR-based BCI can allow for a human-computer interaction with a mind switch task.

Keywords

Brain Computer Interface fNIR Near Infrared Spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heiman-Patterson, T.D., Miller, R.G.: NIPPV: a treatment for ALS whose time has come. Neurology, 2006 67(5), 736–737 (2006)Google Scholar
  2. 2.
    Verma, A., Bradley, W.G.: Atypical motor neuron disease and related motor syndromes. Semin Neurol. 21(2), 177–187 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    Abrahams, S., Leigh, P.N., Goldstein, L.H.: Cognitive change in ALS: a prospective study. Neurology, 2005 64(7), 1222–1226 (2005)Google Scholar
  4. 4.
    Neary, D., Snowden, J.S., Mann, D.M.: Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). J. Neurol. Sci. 180(1-2), 15–20 (2000)CrossRefPubMedGoogle Scholar
  5. 5.
    Wolpaw, J.R., et al.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    Wolpaw, J.R., McFarland, D.J.: Multichannel EEG-based brain-computer communication. Electroencephalogr Clin. Neurophysiol. 90(6), 444–449 (1994)CrossRefPubMedGoogle Scholar
  7. 7.
    Kubler, A., et al.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology, 2005 64(10), 1775–1777 (2005)Google Scholar
  8. 8.
    Schalk, G., et al.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans Biomed. Eng. 51(6), 1034–1043 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Birbaumer, N., et al.: The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil. Eng. 8(2), 190–193 (2000)CrossRefPubMedGoogle Scholar
  10. 10.
    Birbaumer, N., et al.: A spelling device for the paralysed. Nature, 1999 398(6725), 297–298 (1999)Google Scholar
  11. 11.
    Wolpaw, J.R.: Brain-computer interfaces as new brain output pathways. J. Physiol. 579(Pt 3), 613–619 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Coyle, S., et al.: On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces. Physiol. Meas 25(4), 815–822 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Sitaram, R., et al.: Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. NeuroImage 34(4), 1416–1427 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Caria, A., et al.: Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage 35(3), 1238–1246 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    De Charms, R.C.: Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn. Sci. 11(11), 473–481 (2007)CrossRefGoogle Scholar
  16. 16.
    de Charms, R.C., et al.: Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1), 436–443 (2004)CrossRefGoogle Scholar
  17. 17.
    de Charms, R.C., et al.: Control over brain activation and pain learned by using real-time functional MRI. Proc. Natl. Acad. Sci. USA 102(51), 18626–18631 (2005)CrossRefGoogle Scholar
  18. 18.
    Hinterberger, T., et al.: Neuronal mechanisms underlying control of a brain-computer interface. Eur. J. Neurosci. 21(11), 3169–3181 (2005)CrossRefPubMedGoogle Scholar
  19. 19.
    Hinterberger, T., et al.: An EEG-driven brain-computer interface combined with functional magnetic resonance imaging (fMRI). IEEE Trans Biomed. Eng. 51(6), 971–974 (2004)CrossRefPubMedGoogle Scholar
  20. 20.
    Weiskopf, N., et al.: Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51(6), 966–970 (2004)CrossRefPubMedGoogle Scholar
  21. 21.
    Weiskopf, N., et al.: Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 25(6), 989–1003 (2007)CrossRefPubMedGoogle Scholar
  22. 22.
    Weiskopf, N., et al.: Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3), 577–586 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    Chance, B., et al.: Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast. Philos. Trans R Soc. Lond. B Biol. Sci. 352(1354), 707–716 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chance, B., et al.: Cognition-activated low-frequency modulation of light absorption in human brain. Proc. Natl. Acad. Sci. USA 90(8), 3770–3774 (1993)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoshi, Y., Tamura, M.: Near-infrared optical detection of sequential brain activation in the prefrontal cortex during mental tasks. Neuroimage 5(4 Pt 1), 292–297 (1997)CrossRefPubMedGoogle Scholar
  26. 26.
    Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20(10), 435–442 (1997)CrossRefPubMedGoogle Scholar
  27. 27.
    Villringer, A., et al.: Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154(1-2), 101–104 (1993)CrossRefPubMedGoogle Scholar
  28. 28.
    Bozkurt, A., et al.: A portable near infrared spectroscopy system for bedside monitoring of newborn brain. Biomed. Eng. Online 4(1), 29 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bozkurt, A., Onaral, B.: Safety assessment of near infrared light emitting diodes for diffuse optical measurements. Biomed. Eng. Online 3(1), 9 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52(7), 679–693 (2002)CrossRefPubMedGoogle Scholar
  31. 31.
    Bunce, S.C., et al.: Functional near-infrared spectroscopy: An Emerging Neuroimaging Modality. IEEE Eng Med. Biol. Mag. 25(4), 54–62 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Izzetoglu, M., et al.: Functional near-infrared neuroimaging. IEEE Trans Neural Syst. Rehabil. Eng. 13(2), 153–159 (2005)CrossRefPubMedGoogle Scholar
  33. 33.
    Izzetoglu, K., et al.: Functional Optical Brain Imaging Using Near-Infrared During Cognitive Tasks. International Journal of Human-Computer Interaction 17(2), 211–227 (2004)CrossRefGoogle Scholar
  34. 34.
    Coyle, S., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 4(3), 219–226 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    Matthews, F., et al.: Hemodynamics for Brain-Computer Interfaces. Signal Processing Magazine 25(1), 87–94 (2008)CrossRefGoogle Scholar
  36. 36.
    Bauernfeind, G., et al.: Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomed. Tech (Berl) 53(1), 36–43 (2008)CrossRefGoogle Scholar
  37. 37.
    Naito, M., et al.: A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light. IEICE Trans Inf. Syst. E90-D(7), 1028–1037 (2007)CrossRefGoogle Scholar
  38. 38.
    Ayaz, H., et al.: Detecting cognitive activity related hemodynamic signal for brain computer interface using functional near infrared spectroscopy. In: 3rd IEEE/EMBS Conference on Neural Engineering, pp. 342–345 (2007)Google Scholar
  39. 39.
    Luu, S., Chau, T.: Decoding subjective preference from single-trial near-infrared spectroscopy signals. J. Neural Eng. 6(1), 16003 (2009)CrossRefGoogle Scholar
  40. 40.
    Ayaz, H., et al.: Registering fNIR data to brain surface image using MRI templates. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 2671–2674 (2006)PubMedGoogle Scholar
  41. 41.
    Ayaz, H., Onaral, B.: Analytical software and stimulus-presentation platform to utilize, visualize and analyze near-infrared spectroscopy measures, p. xiii, 103 leaves. Drexel University, Philadelphia (2005)Google Scholar
  42. 42.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefPubMedGoogle Scholar
  43. 43.
    Paas, F.G.W.C., Van Merriënboer, J.J.G.: The Efficiency of Instructional Conditions: An Approach to Combine Mental Effort and Performance Measures. Human Factors: The Journal of the Human Factors and Ergonomics Society 35, 737–743 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hasan Ayaz
    • 1
  • Patricia A. Shewokis
    • 1
    • 2
  • Scott Bunce
    • 1
    • 3
  • Maria Schultheis
    • 1
    • 4
  • Banu Onaral
    • 1
  1. 1.School of Biomedical Engineering, Science & Health SystemsUSA
  2. 2.College of Nursing and Health ProfessionsUSA
  3. 3.College of Medicine, Department of PsychiatryUSA
  4. 4.College Arts and Sciences, Department of PsychologyDrexel UniversityPhiladelphiaUSA

Personalised recommendations