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Abstract. Functional Near Infrared Spectroscopy (fNIR) is a promising brain 
imaging technology that relies on optical techniques to detect changes of hemo-
dynamic responses within the prefrontal cortex in response to sensory, motor, or 
cognitive activation. fNIR is safe, non-invasive, affordable, and highly portable. 
The objective of this study is to determine if biomarkers of neural activity gen-
erated by intentional cognitive activity, as measured by fNIR, can be used to 
communicate directly from the brain to a computer. A bar-size-control task 
based on a closed-loop system was designed and tested with 5 healthy subjects 
across two days. Comparisons of the average task and rest period oxygenation 
changes are significantly different (p<0.01). The average task completion time 
(reaching +90%) decreases with practice: day1 (mean 52.3 sec) and day2 (mean 
39.1 sec). These preliminary results suggest that a closed-loop fNIR-based BCI 
can allow for a human-computer interaction with a mind switch task. 
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1   Introduction 

The purpose of this research is to develop a new functional Near-Infrared (fNIR) 
based Brain Computer Interface (BCI) to allow communication directly from the 
brain to a computer.  In this paper, we have reported the implementation and initial 
results of a closed-loop fNIR based BCI system and the analysis methods that allow 
classification of two states (rest and task) using single channel two wavelength optical 
signals.  

An individual’s communication with the outside world can cease because of com-
plete paralysis, locked-in syndrome, spinal cord injury or muscular dystrophy. Indi-
viduals suffering from such diseases and conditions, though conscious, may lose all 
voluntary muscle control and thus are often unable to communicate even their most 
basic wishes [1, 2]. Unlike a persistent vegetative state, in which the upper portions of 
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the brain are damaged and the lower portions are spared, an inability to move may be 
caused by damage to specific portions of the lower brain and brainstem or to muscles 
with no damage to the upper brain. Consequently, an individual’s cognitive abilities 
remain relatively intact [2-4].  

BCI is defined as a system that translates neurophysiological signals detected from 
the brain to supply input to a computer or to control a device. BCI research largely 
targets to eliminate the need for motor movement and develop mechanisms to relay 
information directly from the brain to a computer which, in turn, can be used to con-
trol or communicate with outside world. In addition to their use in neuroprosthetics, 
noninvasive BCI systems also have potential applications for healthy individuals 
especially for enhancing or accelerating the learning process, or in entertainment 
domains such as in computer games and multimedia applications as a neurofeedback 
mechanism. Development of alternative communication strategies are a recognized 
need for clinical applications. A technique that bypasses muscles and acquires signals 
directly from brain would be a notable help. Moreover, this technique should be 
minimally intrusive, non-invasive, accessible, and safe to be used continuously. 

1.1   Monitoring Brain Activity 

The key element in a BCI system is monitoring brain activity. There are several avail-
able technologies that utilize different sensors or sensor configurations to collect  
various types of brain signals.  

The most commonly studied interface to monitor brain activity noninvasively has 
been Electroencephalogram (EEG), due to its fine temporal resolution, portability and 
low cost [5-10]. Various electrode placement schemes and advanced signal processing 
methods have been researched for its improved and practical use in BCI applications 
[11]. However, these EEG based systems still have certain drawbacks. For example, 
the end-user has to develop a new thinking mechanism to be able to interact with the 
EEG based BCI system which results in lengthy training times [12]. Furthermore, 
non-invasive EEG recordings from portable devices are highly susceptible to noise 
and hence have much lower signal to noise ratio as compared to signals recorded from 
implanted electrodes [13]. In addition, electrode fixation is difficult and cumbersome 
to use in practice and for long-term use because of the need for applying gel and the 
restrictions on users’ movements. Therefore, existing BCI systems do not yet meet the 
desired characteristics of an optimal BCI. In fact, they are either invasive and hence 
not yet completely safe for continuous use or they are non-invasive but rely on a noisy 
signal and require mental adaptation mechanisms.  

Another potential neuroimaging modality is functional Magnetic Resonance Imag-
ing (fMRI) which is a special type of MRI scan that measures the hemodynamic re-
sponse to neural activity. Recently, this technique has been improved to be used at 
real-time in which output of the system could be used to give biofeedback to the sub-
ject, thus creating a closed-loop system. It has been shown using real-time functional 
magnetic resonance imaging (rt-fMRI) that subjects can voluntarily change activa-
tion/oxygenation levels of certain brain regions [14-22]. This technique is non-
invasive and allows detecting signals anywhere in the brain, and thus provides more 
flexibility for the BCI mental task. However, the downside is that participants have to 
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be scanned in large and expensive MRI machines and thus may not be practical for 
daily and long-term use.  

In order to partially overcome the problems of existing BCI and provide an alterna-
tive communication mechanism for individuals with locked-in syndromes, we pro-
pose to use continuous wave fNIR as a new functional neuroimaging modality for 
Brain Computer Interface. In the next section, we will briefly discuss the fundamen-
tals of fNIR, types of fNIR instrumentation and other BCI studies that have utilized 
fNIR. 

2   fNIR Spectroscopy 

fNIR is a multi-wavelength optical spectroscopy technique introduced as a non-
invasive brain activity monitoring modality [23-27]. fNIR can assess temporal pro-
gression of brain activity, through the measurement of hemodynamic changes within 
reasonable spatial resolution. Neuronal activity is determined with respect to the 
changes in oxygenation since variation in cerebral hemodynamics are related to func-
tional brain activity through a mechanism which is known as neurovascular coupling 
[26]. fNIR is not only non-invasive, safe, affordable and portable [28, 29], it also 
provides a balance between temporal and spatial resolution which makes fNIR a vi-
able option for in-the field neuroimaging. 

2.1   Light Tissue Interaction  

Typically, an optical apparatus for fNIR Spectroscopy consists of at least one light 
source and a light detector that receives light after it has interacted with the tissue. 
Photons that enter tissue undergo two different types of interaction: absorption and 
scattering [30]. Whereas most biological tissues (including water) are relatively trans-
parent to light in the near infrared range between 700 to 900 nm, hemoglobin is a 
strong absorber of lightwaves in this range of the spectrum. 

Two chromophores, oxy- and deoxy-Hb, are strongly linked to tissue oxygenation 
and metabolism [26]. Fortuitously, the absorption spectra of oxy- and deoxy-Hb re-
main significantly different from each other allowing spectroscopic separation of 
these compounds to be possible by using only a few sample wavelengths. Once the 
photons are introduced into the human head, they are either scattered by extra- and 
intracellular boundaries of different layers of the head (skin, skull, cerebrospinal fluid, 
brain, etc.) or absorbed mainly by oxy- and deoxy-Hb. If a photodetector is placed on 
the skin surface at a certain distance from the light source, it can collect the photons 
that are scattered and thus have traveled along a “banana shaped path” from the 
source to the detector [23, 25, 26].  

2.2   Types of fNIR Systems 

A wide variety of both commercial and custom-built fNIR instruments are currently 
in use. There are three distinct types of fNIR spectroscopy implementations; time-
resolved (TR), frequency domain (FD) and continuous wave (CW) systems, each with 
its own strengths and limitations. TR and FD systems provide information on shifts in  
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both phase and amplitude of the light and are necessary for more precise quantifica-
tion of fNIR signals. Lasers are used as light sources and fiber optic light guides are 
utilized in sensors. CW systems apply either continuous or a slow-pulsed light to 
tissue and measure the attenuation of amplitude of the incident light. These systems 
utilize less sophisticated detectors than TR and FD systems, and, therefore, they can-
not determine the pathlength the photons have traveled. As such, CW systems provide 
only a measure of the relative change in light intensity Although CW systems provide 
somewhat less information than TR and FD systems, this tradeoff results in the capac-
ity to design more compact and inexpensive hardware, making it advantageous for 
real-life applications [31]. CW system can use Light-Emitting-Diode (LED), instead 
of Laser, as light sources and do not necessarily require fiber optics in sensors, mak-
ing them less expensive and more comfortable to wear for longer periods of time. 

2.3   fNIR in BCI Research 

There is recent evidence indicating that fNIR can be used for the assessment of atten-
tion [32] and cognitive task loads [33]. Recently, the suitability of optical methods for 
BCI has been investigated by acquiring signals from the motor cortex using motor 
imagery tasks [12, 13, 34, 35] and by acquiring signals from the frontal cortex by 
mental arithmetic [36] and cognitive workload [37-39] tasks. Taken together, the 
results of these studies have focused on offline analysis and use either FD-fNIR or 
laser with fiber optics. The overall aim is to build a CW-fNIR based BCI system that 
will be operated by the volitional activation of the prefrontal cortex assisted by neural 
biofeedback. As a first step, we have investigated the potential of fNIR in discriminat-
ing cognitive activity levels based on different tasks. Our results suggest that with a 
CW-fNIR system, we can detect increased oxygenation within the frontal lobe with 
increased cognitive task load  [38]. In this study, we have investigated a closed-loop 
feedback regulated CW-fNIR based system.  

3   Materials and Methods 

3.1   Drexel fNIR System  

The CW-fNIR system used in this study has a flexible sensor pad that contains 4 LED 
light sources with built in peak wavelengths at 730, 805, 850 nm and 10 detectors 
designed to sample cortical areas underlying the forehead (See Fig. 1). With a fixed 
source-detector separation of 2.5 cm, this configuration generates a total of 16 meas-
urement channels per wavelength. The sampling rate of the system is 2Hz [32, 40, 41].  

3.2   Experiment Setup 

The experimental setup is composed of a Protocol-Computer, a Data-Acquisition 
computer and the Drexel fNIR system parts as described in Fig. 1. The fNIR sensor is 
positioned on the subject that is sitting in front of the Protocol Computer as shown in 
Fig. 2.  
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Fig. 1. Drexel fNIR System Parts 

 
Fig. 2. Experiment Setup 

Information flow starts from at the fNIR Sensor and through the control box, 
reaches the Data-Acquisition Computer. COBI Studio software [41] collects raw fNIR 
signals for 16 channels and 2 wavelengths and transmit them through Ethernet or wire-
less network (via TCP/IP) to the Protocol Computer. The BCI Client software on the 
Protocol-Computer receives the raw fNIR signals, calculates the oxygenation changes 
at run-time using modified Beer Lambert Law and modifies the visual feedback which 
in turn changes the fNIR signals at sensor; thus completing the closed loop. 

3.3   Participants 

Five healthy right-handed subjects (4 males, 1 female) with no neurological or psy-
chiatric history (ages between 24 to 27years) voluntarily participated in the two-day 
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study. Handedness was assessed by the Edinburg Handedness Inventory [42]. All 
subjects gave written informed consent approved by the institutional review board of 
Drexel University for the experiment. 

3.4   Experiment Protocol 

A computerized task, called bar-size-control was developed to control the timing, 
display the visual feedback and to save user input. In a single trial, subjects are first 
asked to rest for 20 seconds with a blank screen, after which a vertical or horizontal 
bar will appear (See Fig. 3.).  

 

Fig. 3. Horizontal/vertical bar cue shown full-screen. The bar size is changed every 500 milli-
seconds according to the oxygenation changes of the subjects. 

 

Fig. 4. Self-assessment screen is shown at the end of each trial. Subjects use left/right cursor 
buttons to change the value and press enter to select the value. 

Initially, the bar is at 50 percent size and is mapped to the oxygenation data calcu-
lated from fNIR data that is updated at a frequency of 2Hz. The subject is asked to 
concentrate on the bar for up to 120 seconds. Finally, the subject is asked to rate their 
effort on scale from 0-10 with 0 lowest and 10 highest effort/difficulty (See Fig. 4.) 
[43]. The subject has 30 seconds to complete this effort rating activity. Each trial lasts 
a maximum of 170 seconds.  

3.5   Signal Analysis 

There are two types of signal processing in this study. The first one is online process-
ing, that is done during the experiment, and the second one is offline processing that 
is completed after the experiment to analyze the data. Both online and offline analyses 
include calculation of oxygenation changes from raw data using the following steps 
[31, 32]. 

The raw optical intensity values in two wavelengths (730nm and 850nm) are 
transmitted and recorded by the fNIR system for all subjects. The physiologically 
irrelevant data (such as respiration and heart pulsation effects) and equipment noise, 
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and so forth is first eliminated from the raw fNIR measurements by using a low-pass 
filter with a cut-off frequency of 0.14Hz.  

The online processing further involves calculating the visual cue size based on the 
oxygenation changes during the experiment. Size of the vertical or horizontal bar is 
modeled as a linear transformation of the oxygenation changes of channel 6 that cor-
responds to a voxel location close to Fp1 in the international 10-20 system. Bar(t) is 
the bar size as a function of time t, where tn is the time when the bar task started. 
BaseOxy for channel 6 and time tn is calculated by the moving average of the last k 
oxygenation change values for the same channel multiplied by the constant α which is 
the difficulty parameter. α= 1.5 was used for all subjects. 

 

 

 

(1) 
 

 
(2) 

 
 

(3) 

For the offline processing blocks for rest and task conditions were identified for 
day1 and day2 of each subject. Averages of oxygenation changes in rest and task 
performing blocks where compared with a-repated measures ANOVA model. Fur-
thermore, select non-parametric classification algorithms and their success rates on 
the available data have been applied. These techniques enable classifying a set of 
observations into predefined classes which in our case are task performing or resting 
conditions. To classify the blocks with a linear and quadratic discriminant algorithm a 
subset of data is used as training set. k-Nearest neighbor search (k-NN) and naive 
Bayes classifier (MATLAB 2008a, MathWorks Inc.) were used with day1 as training 
and day2 as sample, and also, half of day2 as training and the rest of day2 as sample.  

4   Results and Discussion 

For the computerized task, a bar was chosen for its simplicity and familiarity to all 
computer users. Experiments are ongoing.  Comparisons of the means for task and 
rest period oxygenation changes are significantly different (p<0.01). The average task 
completion time (reaching +90%) decreases with practice: day1 (mean 52.3 sec) and 
day2 (mean 39.1 sec) across all subjects. This suggests learning and adaptation is in 
process. 

During offline processing, blocks (rest and task periods within days) are classified 
with the following non-parametric algorithms: k-Nearest Neighborhood and naïve 
Bayes classifier. For the classification the first 16.5 seconds of each block is used. 
First, the algorithms are trained with the Day1 task and rest periods block data and 
asked to identify Day2 blocks whether they are task and rest. This was done for each 
subject individually and also for all subjects. The results are listed in column A in 
Table 1.. Next the same analysis is done with a different training set, instead of Day1, 
the first half of the Day2 data (task and rest periods) was  used. Thus,  condition B has 
half of the training and sample size of the previous condition.  Correct classification 
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success rates are listed in column B of Table 1.. Algorithms were unbiased and did 
not include the behavioral performance score or the self reported performance score.  
The success rate of algorithms varies between subjects suggesting that some subjects 
are better at using the closed loop system than other subjects. Also, column B indi-
cates a lower success rate which in turn might be related to a lower training set than 
column A.  Overall classification rates suggests a pattern across subjects and using the 
training data from all subjects provides a better chance of correct classification than 
individual subjects classification. 

Table 1. Classification algorithm performances as percentage of correct classification in two 
conditions: A and B. The first condition A has training set Day1 and sample set as Day2. 
Second condition has training set as the first half of Day2 and sample set as second half of 
Day2. 

A B 

kNN Bayes kNN Bayes 

 Rest Task Rest Task Rest Task Rest Task 

Subj1 100 100 100 100 100 90.9 100 90.91 

Subj2 100 100 100 100 93.75 68.75 87.5 68.75 

Subj3 100 80 70 55 72.72 63.64 90.1 54.55 

Subj4 75 70 100 60 63.64 100 90.9 100 

Subj5 80 56.67 100 100 75 68.75 87.5 75 

Overall 93.3 72.5 100 95 77.1 73.77 86.89 57.37 

5   Conclusion 

In this study, we have reported the implementation and initial results of a closed-loop 
fNIR based BCI system along with the analysis methods that allows classification of 
two states (rest and task) using only fNIR signals. This system can be used for binary 
selection with volitional activation of the prefrontal cortex. Further experiments are 
pending to study and improve the use of algorithms for online classification. 
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