Skip to main content

Nanotribology, Nanomechanics, and Materials Characterization

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Nanotribology and nanomechanics studies are needed to develop a fundamental understanding of interfacial phenomena on a small scale and to study interfacial phenomena in micro-/nanoelectromechanical systems (MEMS/NEMS), magnetic storage devices, and other applications. Friction and wear of lightly loaded micro-/nanocomponents are highly dependent on surface interactions (few atomic layers). These structures are generally coated with molecularly thin films. Nanotribology and nanomechanics studies are also valuable in the fundamental understanding of interfacial phenomena in macrostructures and provide a bridge between science and engineering. An atomic force microscope (AFM) tip is used to simulate a single-asperity contact with a solid or lubricated surface. AFMs are used to study the various tribological phenomena, which include surface roughness, adhesion, friction, scratching, wear, detection of material transfer, and boundary lubrication. In situ surface characterization of local deformation of materials and thin coatings can be carried out using a tensile stage inside an AFM. Mechanical properties such as hardness, Youngʼs modulus of elasticity, and creep/relaxation behavior can be determined on micro- to picoscales using a depth-sensing indentation system in an AFM. Localized surface elasticity and viscoelastic mapping of near-surface regions can be obtained with nanoscale lateral resolution. Finally, an AFM can be used for nanofabrication/nanomachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A/D:

analog-to-digital

AC:

alternating-current

AC:

amorphous carbon

AFAM:

atomic force acoustic microscopy

AFM:

atomic force microscope

AFM:

atomic force microscopy

BDCS:

biphenyldimethylchlorosilane

BPT:

biphenyl-4-thiol

BPTC:

cross-linked BPT

DC:

direct-current

DI:

deionized

DI:

digital instrument

DLC:

diamondlike carbon

FESP:

force modulation etched Si probe

FFM:

friction force microscope

FFM:

friction force microscopy

HDT:

hexadecanethiol

HOPG:

highly oriented pyrolytic graphite

LB:

Langmuir–Blodgett

LFM:

lateral force microscope

LFM:

lateral force microscopy

ME:

metal-evaporated

MEMS:

microelectromechanical system

MP:

metal particle

MWNT:

multiwall nanotube

NEMS:

nanoelectromechanical system

PECVD:

plasma-enhanced chemical vapor deposition

PET:

poly(ethyleneterephthalate)

PFPE:

perfluoropolyether

PZT:

lead zirconate titanate

RH:

relative humidity

RMS:

root mean square

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SFA:

surface forces apparatus

STM:

scanning tunneling microscope

STM:

scanning tunneling microscopy

TEM:

transmission electron microscope

TEM:

transmission electron microscopy

TESP:

tapping mode etched silicon probe

TM:

tapping mode

TR:

torsional resonance

Z-DOL:

perfluoropolyether

References

  1. I.L. Singer, H.M. Pollock (Eds.): Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO ASI Ser. E, Vol. 220 (Kluwer, Dordrecht 1992)

    Google Scholar 

  2. H.J. Güntherodt, D. Anselmetti: Forces in Scanning Probe Methods, NATO ASI Ser. E, Vol. 286 (Kluwer, Dordrecht 1995)

    Book  Google Scholar 

  3. B.N.J. Persson, E. Tosatti: Physics of Sliding Friction, NATO ASI Ser. E, Vol. 311 (Kluwer, Dordrecht 1996)

    Google Scholar 

  4. B. Bhushan: Micro/Nanotribology and its Applications, NATO ASI Ser. E, Vol. 330 (Kluwer, Dordrecht 1997)

    Book  Google Scholar 

  5. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  6. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  7. B. Bhushan: Nanoscale tribophysics and tribomechanics, Wear 225–229, 465–492 (1999)

    Article  Google Scholar 

  8. B. Bhushan: Modern Tribology Handbook, Vol. 1: Principles of Tribology (CRC, Boca Raton 2001)

    Google Scholar 

  9. B. Bhushan: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/ Nanoscales, NATO Sci. Ser. II, Vol. 10 (Kluwer, Dordrecht 2001)

    Book  Google Scholar 

  10. B. Bhushan: Nano- to microscale wear and mechanical characterization studies using scanning probe microscopy, Wear 251, 1105–1123 (2001)

    Article  Google Scholar 

  11. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  12. B. Bhushan: Nanotribology and nanomechanics, Wear 259, 1507–1531 (2005)

    Article  Google Scholar 

  13. B. Bhushan: Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin Heidelberg 2008)

    Google Scholar 

  14. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  Google Scholar 

  15. B. Bhushan: Tribology and Mechanics of Magnetic Storage Devices, 2nd edn. (Springer, New York 1996)

    Book  Google Scholar 

  16. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Book  Google Scholar 

  17. B. Bhushan: Wear and mechanical characterisation on micro- to picoscales using AFM, Int. Mater. Rev. 44, 105–117 (1999)

    Article  Google Scholar 

  18. B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction (invited), J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Article  Google Scholar 

  19. B. Bhushan: Nanotribology, nanomechanics and nanomaterials characterization, Philos. Trans. R. Soc. A 366, 1351–1381 (2008)

    Article  MathSciNet  Google Scholar 

  20. B. Bhushan, A.V. Kulkarni, V.N. Koinkar, M. Boehm, L. Odoni, C. Martelet, M. Belin: Microtribological characterization of self-assembled and Langmuir–Blodgett monolayers by atomic and friction force microscopy, Langmuir 11, 3189–3198 (1995)

    Article  Google Scholar 

  21. B. Bhushan, H. Fuchs, S. Hosaka (Eds.): Applied Scanning Probe Methods (Springer, Berlin Heidelberg 2004)

    Google Scholar 

  22. B. Bhushan, H. Fuchs, S. Kawata (Eds.): Applied Scanning Probe Methods V – Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg 2007)

    Google Scholar 

  23. B. Bhushan, H. Fuchs, M. Tomitori (Eds.): Applied Scanning Probe Methods VIII – Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg 2008)

    Google Scholar 

  24. B. Bhushan, H. Fuchs, M. Tomitori (Eds.): Applied Scanning Probe Methods IX – Characterization (Springer, Berlin Heidelberg 2008)

    Google Scholar 

  25. B. Bhushan, H. Fuchs, M. Tomitori (Eds.): Applied Scanning Probe Methods X – Biomimetics and Industrial Applications (Springer, Berlin Heidelberg 2008)

    Google Scholar 

  26. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods II – Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg 2006)

    Google Scholar 

  27. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods III – Characterization (Springer, Berlin Heidelberg 2006)

    Google Scholar 

  28. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods IV – Industrial Applications (Springer, Berlin Heidelberg 2006)

    Google Scholar 

  29. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods VII – Biomimetics and Industrial Applications (Springer, Berlin Heidelberg 2007)

    Google Scholar 

  30. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods XI – Scanning Probe Microscopy Techniques (Springer, Berlin Heidelberg 2009)

    Google Scholar 

  31. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods XII – Characterization (Springer, Berlin Heidelberg 2009)

    Google Scholar 

  32. B. Bhushan, H. Fuchs (Eds.): Applied Scanning Probe Methods XIII – Biomimetics and Industrial Applications (Springer, Berlin Heidelberg 2009)

    Google Scholar 

  33. B. Bhushan, S. Kawata (Eds.): Applied Scanning Probe Methods VI – Characterization (Springer, Berlin Heidelberg 2007)

    Google Scholar 

  34. G. Binnig, C.F. Quate, C. Gerber: Atomic force microscopy, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  35. G. Binnig, C. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3, 1281–1286 (1987)

    Article  Google Scholar 

  36. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  Google Scholar 

  37. B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: Part II – Application to magnetic media, ASME J. Tribol. 116, 389–396 (1994)

    Article  Google Scholar 

  38. J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I – General principles and new measurement techniques, ASME J. Tribol. 116, 378–388 (1994)

    Article  Google Scholar 

  39. J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)

    Article  Google Scholar 

  40. J. Ruan, B. Bhushan: Frictional behavior of highly oriented pyrolytic graphite, J. Appl. Phys. 76, 8117–8120 (1994)

    Article  Google Scholar 

  41. B. Bhushan, V.N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng. J: J. Eng. Tribol. 208, 17–29 (1994)

    Google Scholar 

  42. B. Bhushan, A.V. Kulkarni: Effect of normal load on microscale friction measurements, Thin Solid Films 278, 49–56 (1996)

    Article  Google Scholar 

  43. B. Bhushan, S. Sundararajan: Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    Article  Google Scholar 

  44. V. Scherer, W. Arnold, B. Bhushan: Active friction control using ultrasonic vibration. In: Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht 1998) pp. 463–469

    Chapter  Google Scholar 

  45. V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interface Anal. 27, 578–587 (1999)

    Article  Google Scholar 

  46. M. Reinstädtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomicforce microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)

    Article  Google Scholar 

  47. M. Reinstädtler, U. Rabe, A. Goldade, B. Bhushan, W. Arnold: Investigating ultra-thin lubricant layers using resonant friction force microscopy, Tribol. Int. 38, 533–541 (2005)

    Article  Google Scholar 

  48. M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, W. Arnold: Imaging and measurement of elasticity and friction using the TR mode, J. Phys. D 38, R269–R282 (2005)

    Article  Google Scholar 

  49. B. Bhushan, T. Kasai: A surface topography independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnology 15, 923–935 (2004)

    Article  Google Scholar 

  50. N.S. Tambe, B. Bhushan: A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, J. Phys. D: Appl. Phys. 38, 764–773 (2005)

    Article  Google Scholar 

  51. V.N. Koinkar, B. Bhushan: Micro/nanoscale studies of boundary layers of liquid lubricants formagnetic disks, J. Appl. Phys. 79, 8071–8075 (1996)

    Article  Google Scholar 

  52. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vac. Sci. Technol. 14, 2378–2391 (1996)

    Article  Google Scholar 

  53. B. Bhushan, H. Liu: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM, Phys. Rev. B 63, 245412-1–245412-11 (2001)

    Google Scholar 

  54. H. Liu, B. Bhushan: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Article  Google Scholar 

  55. B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann: AFM study of perfluorosilane and alkylsilane self-assembled monolayers for antistiction in MEMS/NEMS, Ultramicroscopy 105, 176–188 (2005)

    Article  Google Scholar 

  56. B. Bhushan, V.N. Koinkar: Tribological studies of silicon for magnetic recording applications, J. Appl. Phys. 75, 5741–5746 (1994)

    Article  Google Scholar 

  57. V.N. Koinkar, B. Bhushan: Microtribological studies of Al2O3-TiC, polycrystalline and single-crystal Mn-Zn ferrite and SiC head slider materials, Wear 202, 110–122 (1996)

    Article  Google Scholar 

  58. V.N. Koinkar, B. Bhushan: Microtribological properties of hard amorphous carbon protective coatings for thin film magnetic disks and heads, J. Eng. Tribol. 211, 365–372 (1997)

    Article  Google Scholar 

  59. S. Sundararajan, B. Bhushan: Development of a continuous microscratch technique in an atomic force microscope and its application to study scratch resistance of ultra-thin hard amorphous carbon coatings, J. Mater. Res. 16, 75–84 (2001)

    Article  Google Scholar 

  60. J. Ruan, B. Bhushan: Nanoindentation studies of fullerene films using atomic force microscopy, J. Mater. Res. 8, 3019–3022 (1993)

    Article  Google Scholar 

  61. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/picoindentation measurement using a capacitance transducer system in atomic force microscopy, Philos. Mag. 74, 1117–1128 (1996)

    Article  Google Scholar 

  62. B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 64, 1653–1655 (1994)

    Article  Google Scholar 

  63. B. Bhushan, X. Li: Nanomechanical characterisation of solid surfaces and thin films, Int. Mater. Rev. 48, 125–164 (2003)

    Article  Google Scholar 

  64. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103–106 (1991)

    Article  Google Scholar 

  65. B. Anczykowski, D. Kruger, K.L. Babcock, H. Fuchs: Basic properties of dynamic force microscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66, 251–259 (1996)

    Article  Google Scholar 

  66. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  Google Scholar 

  67. V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Magn. 33, 4077–4079 (1997)

    Article  Google Scholar 

  68. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75–84 (2001)

    Article  Google Scholar 

  69. W.W. Scott, B. Bhushan: Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly-thick lubricant films, Ultramicroscopy 97, 151–169 (2003)

    Article  Google Scholar 

  70. B. Bhushan, J. Qi: Phase contrast imaging of nanocomposites and molecularly thick lubricant films in magnetic media, Nanotechnology 14, 886–895 (2003)

    Article  Google Scholar 

  71. T. Kasai, B. Bhushan, L. Huang, C. Su: Topography and phase imaging using the torsional resonance mode, Nanotechnology 15, 731–742 (2004)

    Article  Google Scholar 

  72. N. Chen, B. Bhushan: Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode in an AFM, J. Microsc. 220, 96–112 (2005)

    Article  MathSciNet  Google Scholar 

  73. M.S. Bobji, B. Bhushan: Atomic force microscopic study of the micro-cracking of magnetic thin films under tension, Scr. Mater. 44, 37–42 (2001)

    Article  Google Scholar 

  74. M.S. Bobji, B. Bhushan: In-situ microscopic surface characterization studies of polymeric thin films during tensile deformation using atomic force microscopy, J. Mater. Res. 16, 844–855 (2001)

    Article  Google Scholar 

  75. N. Tambe, B. Bhushan: In situ study of nanocracking of multilayered magnetic tapes under monotonic and fatigue loading using an AFM, Ultramicroscopy 100, 359–373 (2004)

    Article  Google Scholar 

  76. M. Palacio, B. Bhushan: Normal and lateral force calibration techniques for AFM cantilevers, (submitted for publication) UPDATE WITH JOURNAL

    Google Scholar 

  77. B. Bhushan, T. Kasai, C.V. Nguyen, M. Meyyappan: Multiwalled carbon nanotube AFM probes for surface characterization of micro/nanostructures, Microsyst. Technol. 10, 633–639 (2004)

    Article  Google Scholar 

  78. B. Bhushan: Micro/nanotribology and Its applications to magnetic storage devices and MEMS, Tribol. Int. 28, 85–95 (1995)

    Article  Google Scholar 

  79. D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998)

    Article  Google Scholar 

  80. B. Bhushan, A.V. Goldade: Measurements and analysis of surface potential change during wear of single crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci. 157, 373–381 (2000)

    Article  Google Scholar 

  81. B. Bhushan, A.V. Goldade: Kelvin probe microscopy measurements of surface potential change under wear at low loads, Wear 244, 104–117 (2000)

    Article  Google Scholar 

  82. H.U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interface Anal. 27, 336–340 (1999)

    Article  Google Scholar 

  83. U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Article  Google Scholar 

  84. J. Tamayo, R. Garcia: Deformation, contact time, and phase contrast in tapping mode scanning force microscopy, Langmuir 12, 4430–4435 (1996)

    Article  Google Scholar 

  85. R. Garcia, J. Tamayo, M. Calleja, F. Garcia: Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66, 309–312 (1998)

    Article  Google Scholar 

  86. Y. Song, B. Bhushan: Quantitative extraction of inplane surface properties using torsional resonance mode in atomic force microscopy, J. Appl. Phys. 87, 083533 (2005)

    Article  Google Scholar 

  87. B. Bhushan, J. Ruan, B.K. Gupta: A scanning tunnelling microscopy study of fullerene films, J. Phys. D: Appl. Phys. 26, 1319–1322 (1993)

    Article  Google Scholar 

  88. G.A. Tomlinson: A molecular theory of friction, Philos. Mag. Ser. 7, 905–939 (1929)

    Google Scholar 

  89. D. Tomanek, W. Zhong, H. Thomas: Calculation of an atomically modulated friction force in atomic forcemicroscopy, Europhys. Lett. 15, 887–892 (1991)

    Article  Google Scholar 

  90. E. Meyer, R. Overney, R. Lüthi, D. Brodbeck, L. Howald, J. Frommer, H.J. Güntherodt, O. Wolter, M. Fujihira, T. Takano, Y. Gotoh: Friction force microscopy of mixed Langmuir–Blodgett films, Thin Solid Films 220, 132–137 (1992)

    Article  Google Scholar 

  91. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    Article  Google Scholar 

  92. V.N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81, 2472–2479 (1997)

    Article  Google Scholar 

  93. S. Sundararajan, B. Bhushan: Topography-induced contributions to friction forces measured using an atomic force/friction force microscope, J. Appl. Phys. 88, 4825–4831 (2000)

    Article  Google Scholar 

  94. B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–458 (1991)

    Article  Google Scholar 

  95. K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)

    Article  Google Scholar 

  96. Z. Tao, B. Bhushan: A new technique for studying nanoscale friction at sliding velocities up to 200 mm/s using atomic force microscope, Rev. Sci. Instrum. 71, 103705 (2006)

    Article  Google Scholar 

  97. O. Marti, H.-U. Krotil: Dynamic friction measurement with the scanning force microscope. In: Fundamentals of Tribology and Bridging the Gap Between the Macro- and Micro/Nanoscales, NATO Sci. Ser. II, Vol. 10, ed. by B. Bhushan (Kluwer, Dordrecht 2001) pp. 121–135

    Chapter  Google Scholar 

  98. N.S. Tambe, B. Bhushan: Scale dependence of micro/nano-friction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)

    Article  Google Scholar 

  99. N.S. Tambe, B. Bhushan: Friction model for the velocity dependence of nanoscale friction, Nanotechnology 16, 2309–2324 (2005)

    Article  Google Scholar 

  100. N.S. Tambe, B. Bhushan: Durability studies of micro/nanoelectromechanical system materials, coatings, and lubricants at high sliding velocities (up to 10 mm/s) using a modified atomic force microscope, J. Vac. Sci. Technol. A 23, 830–835 (2005)

    Article  Google Scholar 

  101. N.S. Tambe, B. Bhushan: Identifying materials with low friction and adhesion for nanotechnology applications, Appl. Phys. Lett 86, 061906-1–061906-3 (2005)

    Google Scholar 

  102. Z. Tao, B. Bhushan: Velocity dependence and rest time effect in nanoscale friction of ultrathin films at high sliding velocities, J. Vac. Sci. Technol. A 25, 1267–1274 (2007)

    Article  Google Scholar 

  103. O. Zwörner, H. Hölscher, U.D. Schwarz, R. Wiesendanger: The velocity dependence of frictional forces in point-contact friction, Appl. Phys. A 66, S263–S267 (1998)

    Article  Google Scholar 

  104. E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Güntherodt: Velocity dependence of atomic friction, Phys. Rev. Lett. 84, 1172–1175 (2000)

    Article  Google Scholar 

  105. J.S. Helman, W. Baltensperger, J.A. Holyst: Simple-model for dry friction, Phys. Rev. B 49, 3831–3838 (1994)

    Article  Google Scholar 

  106. C. Fusco, A. Fasolino: Velocity dependence of atomic-scale friction: A comparative study of the one- and two-dimensional Tomlinson model, Phys. Rev. B 71, 045413 (2005)

    Article  Google Scholar 

  107. N.S. Tambe, B. Bhushan: Nanoscale friction mapping, Appl. Phys. Lett. 86, 193102-1–193102-3 (2005)

    Google Scholar 

  108. N.S. Tambe, B. Bhushan: Nanoscale friction and wear maps, Philos. Trans. R. Soc. A 366, 1405–1424 (2008)

    Article  Google Scholar 

  109. N.S. Tambe, B. Bhushan: Nanoscale frictioninduced phase transformation of diamond-like carbon, Scr. Mater. 52, 751–755 (2005)

    Article  Google Scholar 

  110. S.C. Lim, M.F. Ashby: Wear mechanism maps, Acta Metall. 35, 1–24 (1987)

    Article  Google Scholar 

  111. S.C. Lim, M.F. Ashby, J.H. Brunton: Wear-rate transitions and their relationship to wear mechanisms, Acta Metall. 35, 1343–1348 (1987)

    Article  Google Scholar 

  112. N.S. Tambe, B. Bhushan: Nanowear mapping: A novel atomic force microscopy based approach for studying nanoscale wear at high sliding velocities, Tribol. Lett. 20, 83–90 (2005)

    Article  Google Scholar 

  113. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscop, J. Appl. Phys. 87, 1201–1210 (2000)

    Article  Google Scholar 

  114. T. Stifter, O. Marti, B. Bhushan: Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning probe microscopy, Phys. Rev. B 62, 13667–13673 (2000)

    Article  Google Scholar 

  115. U.D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger: Friction force spectroscopy in the lowload regime with well-defined tips. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp. 233–238

    Chapter  Google Scholar 

  116. B. Bhushan, H. Liu, S.M. Hsu: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects, ASME J. Tribol. 126, 583–590 (2004)

    Article  Google Scholar 

  117. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings and Surface Treatments (McGraw-Hill, New York 1991), reprinted by Krieger, Malabar (1997)

    Google Scholar 

  118. B. Bhushan, S. Venkatesan: Mechanical and tribological properties of silicon for micromechanical applications: A review, Adv. Info. Storage Syst. 5, 211–239 (1993)

    Google Scholar 

  119. Anonymous: Properties of Silicon, EMIS Data Reviews Series No. 4. INSPEC, Institution of Electrical Engineers, London. See also Anonymous, MEMS Materials Database, http://www.memsnet.org/material/ (2002)

  120. J.E. Field (Ed.): The Properties of Natural and Synthetic Diamond (Academic, London 1992)

    Google Scholar 

  121. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments, Diam. Relat. Mater. 8, 1985–2015 (1999)

    Article  Google Scholar 

  122. Anonymous: The Industrial Graphite Engineering Handbook (National Carbon Company, New York 1959)

    Google Scholar 

  123. M. Nosonovsky, B. Bhushan: Scale effects in dry friction during multiple-asperity contact, ASME J. Tribol. 127, 37–46 (2005)

    Article  Google Scholar 

  124. H. Liu, B. Bhushan: Adhesion and friction studies of microelectromechanical systems/nanoelectromechanical systems materials using a novel microtriboapparatus, J. Vac. Sci. Technol. A 21, 1528–1538 (2003)

    Article  Google Scholar 

  125. B. Bhushan, M. Nosonovsky: Comprehensive model for scale effects in friction due to adhesion and two- and three-body deformation (plowing), Acta Mater. 52, 2461–2474 (2004)

    Article  Google Scholar 

  126. B. Bhushan, M. Nosonovsky: Scale effects in dry and wet friction, wear, and interface temperature, Nanotechnology 15, 749–761 (2004)

    Article  Google Scholar 

  127. B. Bhushan, M. Nosonovsky: Scale effects in friction using strain gradient plasticity and dislocationassisted sliding (microslip), Acta Mater. 51, 4331–4345 (2003)

    Article  Google Scholar 

  128. V.N. Koinkar, B. Bhushan: Scanning and transmission electron microscopies of single-crystal silicon microworn/machined using atomic force microscopy, J. Mater. Res. 12, 3219–3224 (1997)

    Article  Google Scholar 

  129. X. Zhao, B. Bhushan: Material removal mechanism of single-crystal silicon on nanoscale and at ultralow loads, Wear 223, 66–78 (1998)

    Article  Google Scholar 

  130. B. Bhushan, P.S. Mokashi, T. Ma: A new technique to measure Poissonʼs ratio of ultrathin polymeric films using atomic force microscopy, Rev. Sci. Instrum. 74, 1043–1047 (2003)

    Article  Google Scholar 

  131. A.V. Kulkarni, B. Bhushan: Nanoscale mechanical property measurements using modified atomic forcemicroscopy, Thin Solid Films 290/291, 206–210 (1996)

    Article  Google Scholar 

  132. A.V. Kulkarni, B. Bhushan: Nano/picoindentation measurements on single-crystal aluminum using modified atomic force microscopy, Mater. Lett. 29, 221–227 (1996)

    Article  Google Scholar 

  133. A.V. Kulkarni, B. Bhushan: Nanoindentation measurement of amorphous carbon coatings, J. Mater. Res. 12, 2707–2714 (1997)

    Article  Google Scholar 

  134. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Strain gradient plasticity: Theory and experiment, Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  135. W.D. Nix, H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  MATH  Google Scholar 

  136. W.B. Li, J.L. Henshall, R.M. Hooper, K.E. Easterling: The mechanism of indentation creep, Acta Metall. Mater. 39, 3099–3110 (1991)

    Article  Google Scholar 

  137. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids (Clarendon, Oxford 1950)

    Google Scholar 

  138. Z. Tao, B. Bhushan: Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants, Wear 259, 1352–1361 (2005)

    Article  Google Scholar 

  139. B. Bhushan, M. Cichomski, Z. Tao, N.T. Tran, T. Ethen, C. Merton, R.E. Jewett: Nanotribological characterization and lubricant degradation studies of metal-film magnetic tapes using novel lubricants, ASME J. Tribol. 129, 621–627 (2007)

    Article  Google Scholar 

  140. M. Palacio, B. Bhushan: Surface potential and resistance measurements for detecting wear of chemically-bonded and unbonded molecularly-thick perfluoropolyether lubricant films using atomic force microscopy, J. Colloid Interface Sci. 315, 261–269 (2007)

    Article  Google Scholar 

  141. M. Palacio, B. Bhushan: Wear detection of candidate MEMS/NEMS lubricant films using atomic force microscopy-based surface potential measurements, Scr. Mater. 57, 821–824 (2007)

    Article  Google Scholar 

  142. B. Bhushan, M. Palacio, B. Kinzig: AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films, J. Colloid Interface Sci. 317, 275–287 (2008)

    Article  Google Scholar 

  143. M. Palacio, B. Bhushan: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications, Adv. Mater. 20, 1194–1198 (2008)

    Article  Google Scholar 

  144. M. Palacio, B. Bhushan: Molecularly thick dicationic ionic liquid films for nanolubrication, J. Vac. Sci. Technol. A 27(4), 986–995 (2009)

    Article  Google Scholar 

  145. B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon and polymethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Article  Google Scholar 

  146. H. Liu, B. Bhushan, W. Eck, V. Stadtler: Investigation of the adhesion, friction, and wear properties of biphenyl thiol self-assembled monolayers by atomic force microscopy, J. Vac. Sci. Technol. A 19, 1234–1240 (2001)

    Article  Google Scholar 

  147. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)

    Article  Google Scholar 

  148. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffman: Micro-/nanotribological study of perfluorosilane SAMs for antistiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Article  Google Scholar 

  149. K.K. Lee, B. Bhushan, D. Hansford: Nanotribological characterization of fluoropolymer thin films for biomedical micro-/nanoelectromechemical systems applications, J. Vac. Sci. Technol. A 23, 804–810 (2005)

    Article  Google Scholar 

  150. N.S. Tambe, B. Bhushan: Nanotribological characterization of self assembled monolayers deposited on silicon and aluminum substrates, Nanotechnology 16, 1549–1558 (2005)

    Article  Google Scholar 

  151. Z. Tao, B. Bhushan: Degradation mechanisms and environmental effects on perfluoropolyether, self-assembled monolayers, and diamondlike carbon films, Langmuir 21, 2391–2399 (2005)

    Article  Google Scholar 

  152. E. Hoque, J.A. DeRose, P. Hoffmann, H.J. Mathieu, B. Bhushan, M. Cichomski: Phosphonate self-assembled monolayers on aluminum surfaces, J. Chem. Phys. 124, 174710 (2006)

    Article  Google Scholar 

  153. E. Hoque, J.A. DeRose, G. Kulik, P. Hoffmann, H.J. Mathieu, B. Bhushan: Alkylphosphonate modified aluminum oxide surfaces, J. Phys. Chem. B 110, 10855–10861 (2006)

    Article  Google Scholar 

  154. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu: Alkylperfluorosilane self-assembled monolayers on aluminum: A comparison with alkylphosphonate self-assembled monolayers, J. Phys. Chem. C 111, 3956–3962 (2007)

    Article  Google Scholar 

  155. E. Hoque, J.A. DeRose, P. Hoffmann, B. Bhushan, H.J. Mathieu: Chemical stability of nonwetting, low adhesion self-assembled monolayer films formed by perfluoroalkylsilazation of copper, J. Chem. Phys. 126, 114706 (2007)

    Article  Google Scholar 

  156. E. Hoque, J.A. DeRose, B. Bhushan, H.J. Mathieu: Self-assembled monolayers on aluminum and copper oxide surfaces: Surface and interface characteristics, nanotribological properties, and chemical stability. In: Applied Scanning Probe Methods IX – Characterization, ed. by B. Bhushan, H. Fuchs, M. Tomitori (Springer, Berlin Heidelberg 2008) pp. 235–281

    Chapter  Google Scholar 

  157. E. Hoque, J.A. DeRose, B. Bhushan, K.W. Hipps: Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces, Ultramicroscopy 109(8), 1015–1022 (2009)

    Article  Google Scholar 

  158. J.A. DeRose, E. Hoque, B. Bhushan, H.J. Mathieu: Characterization of perfluorodecanote self-assembled monolayers on aluminum and comparison of stability with phosphonate and siloxy self-assembled monolayers, Surf. Sci. 602, 1360–1367 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bhushan, B. (2010). Nanotribology, Nanomechanics, and Materials Characterization. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics