Skip to main content
Log in

Nanowear Mapping: A Novel Atomic Force Microscopy Based Approach for Studying Nanoscale Wear at High Sliding Velocities

  • Published:
Tribology Letters Aims and scope Submit manuscript

Most micro/nanoelectromechanical system (MEMS/NEMS) devices and components such as microgears and micromotors operate at very high sliding velocities (of the order of tens of mm/s to few m/s). Nanoscale tribology and mechanics of these devices is crucial for evaluating reliability and failure issues, including those stemming from high wear. We have developed a novel AFM based approach for studying nanoscale wear at sliding velocities up to 10 mm/s. The technique is demonstrated by mapping wear of silicon resulting from two- and three-body abrasions, and that of diamondlike carbon (DLC) resulting from phase transformation of DLC to a graphite-like phase. The novel AFM based approach for nanowear mapping provides a reliable as well as a fast means for investigating wear on the nanoscale as a function of normal load and sliding velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Maboudian R.T. Howe (1997) J. Vac. Sci. Technol. B 15 1–20 Occurrence Handle10.1116/1.589247

    Article  Google Scholar 

  2. B. Bhushan (1998) Tribology Issues and Opportunities in MEMS Kluwer Academic Publishers Dordrecht, Netherlands

    Google Scholar 

  3. B. Bhushan (2003) J. Vac. Sci. Technol. B 21 2262–2296 Occurrence Handle10.1116/1.1627336

    Article  Google Scholar 

  4. B. Bhushan (1999) Handbook of Micro/Nanotribology EditionNumber2 CRC Press Boca Raton, FL

    Google Scholar 

  5. D. Tabor, Proc. Int. Conf. Tribology in the 80s (NASA Lewis Research Center, Cleveland, Ohio, NASA, 1983) p. 1

  6. F.P. Bowden D. Tabor (1950) The Friction and Lubrication of Solids, Part I Clarendon Press Oxford, UK

    Google Scholar 

  7. F.P. Bowden D. Tabor (1964) The Friction and Lubrication of Solids, Part II Clarendon Press Oxford, UK

    Google Scholar 

  8. I.L. Singer H.M. Pollock (1992) Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO Series E: Applied Sciences, 220 Kluwer Boston

    Google Scholar 

  9. B. Bhushan (1999) Principles and Applications of Tribology Wiley New York

    Google Scholar 

  10. S.C. Lim M.F. Ashby (1987) Acta Metall. 35 1–24 Occurrence Handle10.1016/0001-6160(87)90209-4

    Article  Google Scholar 

  11. C.M. Mate G.M. McClelland R. Erlandsson S. Chiang (1987) Phys. Rev. Lett. 59 1942–1945 Occurrence Handle10.1103/PhysRevLett.59.1942 Occurrence Handle10035374

    Article  PubMed  Google Scholar 

  12. J. Ruan B. Bhushan (1994) ASME J. Tribol. 116 378–388

    Google Scholar 

  13. V. Koinkar B. Bhushan (1996) J. Vac. Sci. Technol. A 14 2378–2391 Occurrence Handle10.1116/1.580026

    Article  Google Scholar 

  14. R. Bennewitz E. Meyer M. Bammerlin T. Gyalog E. Gnecco (2001) NoChapterTitle B. Bhushan (Eds) Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales Kluwer Academic Publishers Dordrecht, Netherlands 53–66

    Google Scholar 

  15. B. Bhushan H. Liu (2001) Phys. Rev. B 63 245412–1 to 11 Occurrence Handle10.1103/PhysRevB.63.245412

    Article  Google Scholar 

  16. H. Liu B. Bhushan (2003) Ultramicroscopy 97 321–340 Occurrence Handle10.1016/S0304-3991(03)00058-5 Occurrence Handle12801686

    Article  PubMed  Google Scholar 

  17. E. Gnecco R. Bennewitz E. Meyer (2002) Phys. Rev. Lett. 88 215501-1–215501-4 Occurrence Handle10.1103/PhysRevLett.88.215501

    Article  Google Scholar 

  18. E. Gnecco R. Bennewitz O. Pfeiffer A. Socoliuc E. Meyer (2004) NoChapterTitle B. Bhushan (Eds) Springer Handbook of Nanotechnology Springer Heidelberg, Germany 631–660

    Google Scholar 

  19. N.S. Tambe B. Bhushan (2004) Nanotechnology 15 1561–1570 Occurrence Handle10.1088/0957-4484/15/11/033

    Article  Google Scholar 

  20. N.S. Tambe B. Bhushan (2005) J. Phys. D: Appl. Phys. 38 764–773 Occurrence Handle10.1088/0022-3727/38/5/015

    Article  Google Scholar 

  21. N.S. Tambe B. Bhushan (2005) J. Vac. Sci. Technol. A 23 830–835 Occurrence Handle10.1116/1.1843821

    Article  Google Scholar 

  22. N.S. Tambe B. Bhushan (2005) Nanotechnology 16 2309–2324 Occurrence Handle10.1088/0957-4484/16/10/054

    Article  Google Scholar 

  23. N.S. Tambe B. Bhushan (2005) Scripta Mater. 52 751–755 Occurrence Handle10.1016/j.scriptamat.2004.12.013

    Article  Google Scholar 

  24. S. Sundararajan B. Bhushan (2001) J. Mater. Res. 16 437–445

    Google Scholar 

  25. H. Liu B. Bhushan (2002) Ultramicroscopy 91 185–202 Occurrence Handle10.1016/S0304-3991(02)00099-2 Occurrence Handle12211468

    Article  PubMed  Google Scholar 

  26. Anonymous (1999), Nanoscope® command reference manual, Version 4.42, Appendix D: Lithography

  27. S.D. Senturia (2001) Microsystem Design Kluwer Boston

    Google Scholar 

  28. M. Madou (2002) Fundamentals of Microfabrication: the Science of Miniaturization EditionNumber2 Boca Raton FL

    Google Scholar 

  29. B. Bhushan (2004) Springer Handbook of Nanotechnology Springer Heidelberg, Germany

    Google Scholar 

  30. A. Grill (1997) Surf. Coat. Technol 94–95 507–513 Occurrence Handle10.1016/S0257-8972(97)00458-1

    Article  Google Scholar 

  31. B. Bhushan (1999) Diamond Relat. Mater. 8 1985–2015 Occurrence Handle10.1016/S0925-9635(99)00158-2

    Article  Google Scholar 

  32. T. Bouhacina J.P. Aime S. Gauthier D. Michel (1997) Phys. Rev. B 56 7694–7703 Occurrence Handle10.1103/PhysRevB.56.7694

    Article  Google Scholar 

  33. O. Marti H.-U. Krotil (2001) NoChapterTitle B. Bhushan (Eds) Fundamentals of Tribology and Bridging the Gap between the Macro- and Micro/Nanoscales Kluwer Academic Publishers Dordrecht, Netherlands 121–135

    Google Scholar 

  34. E. Riedo F. Levy H. Brune (2002) Phys. Rev. Lett. 88 185505-1–185505-4 Occurrence Handle10.1103/PhysRevLett.88.185505

    Article  Google Scholar 

  35. L. Bouquet E. Charlaix S. Ciliberto J. Crassous (1998) Nature 396 735–737 Occurrence Handle10.1038/25492

    Article  Google Scholar 

  36. K. Mizuhara S.M. Hsu (1992) NoChapterTitle D. Dowson (Eds) et al. Wear Particles Elsevier Science Publishers Amsterdam, Netherlands 323–328

    Google Scholar 

  37. E. Riedo E. Gnecco R. Bennewitz E. Meyer H. Brune (2003) Phys. Rev. Lett. 91 084502-1–084502-4 Occurrence Handle10.1103/PhysRevLett.91.084502

    Article  Google Scholar 

  38. Voevodin (1996) Dia. Relat. Mat. 5:1264–1296

  39. C.L. Muhlstein S.B. Brown R.O. Ritchie (2001) J. Microelectromech. Syst. 10 593–600 Occurrence Handle10.1109/84.967383

    Article  Google Scholar 

  40. Anonymous (2004), Scanning Probe Image Processor™, Version 3.2.2.0, Image Metrology A/S, Denmark

  41. D. DeVecchio B. Bhushan (1998) Rev. Sci. Instr 69 3618–3624 Occurrence Handle10.1063/1.1149148

    Article  Google Scholar 

  42. B. Bhushan A.V. Goldade (2000) Appl. Surf. Sci. 157 373–381 Occurrence Handle10.1016/S0169-4332(99)00553-X

    Article  Google Scholar 

  43. B. Bhushan A.V. Goldade (2000) Wear 244 104–117 Occurrence Handle10.1016/S0043-1648(00)00450-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bhushan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tambe, N.S., Bhushan, B. Nanowear Mapping: A Novel Atomic Force Microscopy Based Approach for Studying Nanoscale Wear at High Sliding Velocities. Tribol Lett 20, 83–90 (2005). https://doi.org/10.1007/s11249-005-7795-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-005-7795-z

Key Words

Navigation