Skip to main content

Plant Nuclear Transformation

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Many of the advances in plant biotechnology have been based on transformation; the ability to introduce DNAs into plant cells to recover whole transgenic plants. For DNA introduction to be successful, it must first pass through the cell wall and then into the nucleus, before it is integrated into host DNA. Although many different methods for DNA introduction exist, particle bombardment and Agrobacterium remain the two most commonly used approaches. Ultimately, the final outcome of plant transformation is the recovery of new phenotypes, which could not be easily recovered using conventional breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal PK, Kohli A, Twyman RM, Christou P (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breed 16:247–260

    Article  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Chilton MD (1982) T-DNA of the Agrobacterium Ti and Ri plasmids. Annu Rev Genet 16:357–384

    Article  PubMed  CAS  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chiera JM, Bouchard RA, Dorsey SL, Park EH, Buenrostro-Nava MT, Ling PP, Finer JJ (2007) Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Rep 26:1501–1509

    Article  PubMed  CAS  Google Scholar 

  • Chiera JM, Lindbo JA, Finer JJ (2008) Quantification and extension of transient GFP expression by the co-introduction of a suppressor of silencing. Transgenic Res 17:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC (1972) Plant cell protoplasts -- Isolation and development. Annu Rev Plant Physiol 23:29–50

    Article  CAS  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788

    Article  PubMed  CAS  Google Scholar 

  • DeFramond A, Barton KA, Chilton M-D (1983) Mini-Ti; A new vector strategy for plant genetic engineering. Bio/Technology 1:262–272

    Article  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • D'Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 12 1495–1505

    Google Scholar 

  • Dhillon T, Chiera JM, Lindbo JA, Finer JJ (2009) Quantitative evaluation of six different viral suppressors of silencing using image analysis of transient GFP expression. Plant Cell Rep 28:639–647. doi: 10.1007/s00299-009-0675-5

    Article  PubMed  CAS  Google Scholar 

  • Finer JJ, Dhillon T (2008) Transgenic plant production. In: Stewart CN Jr (ed) Plant biotechnology and genetics: principles, techniques and applications. Wiley, New York, pp 245–272

    Google Scholar 

  • Finer JJ, Larkin KM (2008) Genetic transformation of soybean using particle bombardment and SAAT approaches. In: Kirti PB (ed) Handbook of new technologies for genetic improvement of legumes. CRC, Boca Raton, pp 103–125

    Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol Plant 27P:175–182

    CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238

    Article  Google Scholar 

  • Finer JJ, Beck SL, Buenrostro-Nava MT, Chi YT, Ling PP (2006) Monitoring gene expression in plant tissues; using green fluorescent protein with automated image collection and analysis. In: Gupta SD, Ibaraki Y (eds) Plant tissue culture engineering; focus in biotechnology. Springer, Dordrecht, pp 31–46

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Hadi MZ, MD McMullen, JJ Finer (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  Google Scholar 

  • Hansen G, Das A, Chilton MD (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    Article  PubMed  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Biotechnology 6:915–922

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hunold R, Bronner R, Hahne G (1994) Early events in microprojectile bombardment: cell viability and particle location. Plant J 5:593–604

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    Article  CAS  Google Scholar 

  • Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1998) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541

    Article  Google Scholar 

  • Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9:415–418

    Article  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85:8502–8505

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200

    Article  CAS  Google Scholar 

  • Lazzeri PA, Brettschneider R, Lürs R, Lörz H (1991) Stable transformation of barley via PEG-mediated direct DNA uptake into protoplasts. Theor Appl Genet 81:437–444

    Article  Google Scholar 

  • Lindbo JA (2007) TRBO: a high efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol 145:1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Kang J (2008) Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation. Plant Cell Rep 27:273–-278

    Article  PubMed  CAS  Google Scholar 

  • Luo Z, Wu R (1988) A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6:165–174

    Article  CAS  Google Scholar 

  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML (2003) Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 14:551–556

    Article  CAS  Google Scholar 

  • Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97:41301

    Article  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delanney X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eicholtz DA, Reschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 34:1451–1416

    Article  Google Scholar 

  • Pawlowski WP, Somers DA (1998) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc Natl Acad Sci USA 95:12106–12110

    Article  PubMed  CAS  Google Scholar 

  • Ponappa T, Brzozowski AE, Finer JJ (1999) Transient expression and stable transformation of soybean using the jellyfish green fluorescent protein (GFP) Plant Cell Rep 19:6–12

    Article  CAS  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Shou H, Palmer RG, Wang K (2002) Irreproducibility of the soybean pollen-tube pathway transformation procedure. Plant Mol Biol Rep 20:325–334

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, VanMontagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Trick HN, JJ Finer (1997) SAAT: sonication assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147–154

    Article  PubMed  CAS  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Vaucheret H (1994) Promoter-dependent trans-inactivation in transgenic tobacco plants; kinetic aspects of gene silencing and gene reactivation. C R Acad Sci 317:310–323

    CAS  Google Scholar 

  • Yamashita T, Lida A, Morikawa H (1991) Evidence that more than 90% of β-glucuronidase-expressing cells after particle bombardment directly receive the foreign gene in their nucleus. Plant Physiol 97:829–831

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Su Q, An L (2009a) Ovary-drip transformation: a simple method for directly generating vector- and marker-free transgenic maize (Zea mays L.) with a linear GFP cassette transformation. Planta 229:793–801

    Article  PubMed  CAS  Google Scholar 

  • Yang A, Su Q, An L, Liu J, Wu W, Qiu Z (2009b) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 139:1–5

    Article  PubMed  CAS  Google Scholar 

  • Ye G-N, Stone D, Pang S-Z, Creely W, Gonzalez K, Hinchee M (1999) Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249–257

    Article  PubMed  Google Scholar 

  • Zambryski P (1992) Chronicles from the Agrobacterium--plant cell DNA transfer story. Annu Rev Plant Physiol Mol Biol 43:4645–4690

    Article  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Salaries and research support were provided by the United Soybean Board and by State and Federal funds appropriated to The Ohio State University/Ohio Agricultural Research and Development Center (OSU/OARDC). Mention of proprietary products does not constitute a guarantee or warranty of the product by OSU/OARDC and also does not imply approval to the exclusion of other products that may also be suitable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Finer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Finer, J.J. (2010). Plant Nuclear Transformation. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_1

Download citation

Publish with us

Policies and ethics