Skip to main content

Fertilization in Angiosperms

  • Chapter
  • First Online:
Plant Developmental Biology - Biotechnological Perspectives

Abstract

Fertilization in flowering plants, in its strict sense, is initiated by the discharge of the male gametes within the embryo sac, the fusion of two sperm cells separately with the egg and central cell through plasmogamy, followed by nuclear migration and karyogamy in their respective lineage, embryo and endosperm. Increasingly, more information is available concerning the molecular control of cellular identity, gamete attraction and timing, release of gametes, their ultimate fusion and expression. These events initiate myriad developmental triggers, and thus begin the life of the sporophyte and the precocious endosperm that generates the unique, nutritionally enriched milieu that surrounds the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  PubMed  CAS  Google Scholar 

  • An LH, You RL (2004) Studies on nuclear degeneration during programmed cell death of synergid and antipodal cells in Triticum aestivum. Sex Plant Reprod 17:195–201

    Article  Google Scholar 

  • Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19:1782–1794

    Article  PubMed  CAS  Google Scholar 

  • Berger F (2008) Double-fertilization, from myths to reality. Sex Plant Reprod 21:3–5

    Article  Google Scholar 

  • Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Frietsch S, Kim T-H, Dizon MB, Schroeder JI (2008) The peroxin loss-of-function mutation abstinence by mutual consent disrupts male-female gametophyte recognition. Curr Biol 18:63–68

    Article  PubMed  CAS  Google Scholar 

  • Bradley J, Carman J, Jamison M, Naumova T (2007) Heterochronic features of the female germline among several sexual diploid Tripsacum L. (Andropogoneae, Poaceae). Sex Plant Reprod 20:9–17

    Article  CAS  Google Scholar 

  • Chen Y-H, Li H-J, Shi D-Q, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang W-C (2007) The central cell plays a critical role in pollen tube guidance in Arabidopsis. Plant Cell 19:3563–3577

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Tan JLH, Ingouff M, Sundaresan V, Berger F (2008) Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135:65–73

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  PubMed  CAS  Google Scholar 

  • Coury D, Zhang C, Ko A, Skaggs M, Christensen C, Drews G, Feldmann K, Yadegari R (2007) Segregation distortion in Arabidopsis gametophytic factor 1 (gfa1) mutants is caused by a deficiency of an essential RNA splicing factor. Sex Plant Reprod 20:87–97

    Article  CAS  Google Scholar 

  • Curtis M, Grossniklaus U (2008) Molecular control of autonomous embryo and endosperm development. Sex Plant Reprod 21:79–88

    Article  Google Scholar 

  • Ding L, Fan L-M, Assmann S (2007) pgd1, an Arabidopsis thaliana deletion mutant, is defective in pollen germination. Sex Plant Reprod 20:137–149

    Article  CAS  Google Scholar 

  • Dorantes-Acosta AE, Vielle-Calzada JP (2006) The male gametophytic mutant tepitzin1 indicates a requirement of the homeobox gene WOX for pollen tube growth in Arabidopsis. Sex Plant Reprod 19:163–173

    Article  CAS  Google Scholar 

  • Dresselhaus T (2006) Cell-cell communication during double fertilization. Curr Opin Plant Biol 9:41–47

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Restrepo J-M, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang W-C, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  PubMed  CAS  Google Scholar 

  • Evans MMS (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (1999) Expression of the cell cycle in sperm of Arabidopsis: implications for understanding patterns of gametogenesis and fertilization in plants and other eukaryotes. Development 126:1065–1075

    PubMed  CAS  Google Scholar 

  • Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340

    Article  PubMed  CAS  Google Scholar 

  • Groß-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jürgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    Article  PubMed  Google Scholar 

  • Guo F, Huang BQ, Han Y, Zee SY (2004) Fertilization in maize indeterminate gametophyte1 mutant. Protoplasma 223:111–120

    Article  PubMed  Google Scholar 

  • Higashiyama T, Hamamura Y (2008) Gametophytic pollen tube guidance. Sex Plant Reprod 21:17–26

    Article  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (2000) Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol 122:11–14

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima SY, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H, Kuroiwa T, Nakano A (2006) Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. Plant Physiol 142:481–491

    Article  PubMed  CAS  Google Scholar 

  • Huanca-Mamani W, Garcia-Aguilar M, Leon-Martinez G, Grossniklaus U, Vielle-Calzada J-P (2005) CHR11, a chromatin-remodeling factor essential for nuclear proliferation during female gametogenesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:17231–17236

    Article  PubMed  CAS  Google Scholar 

  • Huang BQ, Russell SD (1992) Female germ unit: organization, reconstruction and isolation. Int Rev Cytol 140:233–293

    Article  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  PubMed  CAS  Google Scholar 

  • Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F (2007) Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Curr Biol 17:1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Iwakawa H, Shinmyo A, Sekine M (2006) Arabidopsis CDKA;1, a CDC2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45:819–831

    Article  PubMed  CAS  Google Scholar 

  • Johnson MA, von Besser K, Zhou Q, Smith E, Aux G, Patton D, Levin JZ, Preuss D (2004) Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168:971–982

    Article  PubMed  CAS  Google Scholar 

  • Johnston AJ, Meier P, Gheyselinck J, Wuest SE, Federer M, Schlagenhauf E, Becker JD, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8:R204

    Article  PubMed  Google Scholar 

  • Jones-Rhoades MW, Borevitz JO, Preuss D (2007) Genome-wide expression profiling of the Arabidopsis female gametophyte identifies families of small, secreted proteins. PLoS Genet 3:1848–1861

    Article  PubMed  CAS  Google Scholar 

  • Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992

    Article  PubMed  CAS  Google Scholar 

  • Kranz E, Scholten S (2008) In vitro fertilization: analysis of early post-fertilization development using cytological and molecular techniques. Sex Plant Reprod 21:67–77

    Article  Google Scholar 

  • Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S, Pei J, Grishin NV, Steele RE, Sinden RE, Snell WJ, Billker O (2008) The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev 22:1051–1068

    Article  PubMed  CAS  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  PubMed  CAS  Google Scholar 

  • Márton ML, Dresselhaus T (2008) A comparison of early molecular fertilization mechanisms in animals and flowering plants. Sex Plant Reprod 21:37–52

    Article  Google Scholar 

  • Márton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by Egg Apparatus 1 of maize. Science 307:573–576

    Article  PubMed  Google Scholar 

  • Mogensen HL (1988) Exclusion of male mitochondria and plastids during syngamy as a basis for maternal inheritance. Proc Natl Acad Sci USA 85:2594–2597

    Article  PubMed  CAS  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83:383–404

    Article  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2006) GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature Cell Biol 8:64–71

    Article  PubMed  CAS  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genet 38:63–67

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Bhalla PL, Singh MB (2006a) Expressed sequence tag analysis of Lilium longiflorum generative cells. Plant Cell Physiol 47:698–705

    Article  CAS  Google Scholar 

  • Okada T, Singh MB, Bhalla PL (2006b) Histone H3 variants in male gametic cells of lily and H3 methylation in mature pollen. Plant Mol Biol 62:503–512

    Article  CAS  Google Scholar 

  • Okada T, Catanach A, Johnson S, Bicknell R, Koltunow A (2007) An Hieracium mutant, loss of apomeiosis 1 (loa1) is defective in the initiation of apomixis. Sex Plant Reprod 20:199–211

    Article  Google Scholar 

  • Pagnussat GC, Yu H-J, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH1. Plant Cell 19:3578–3592

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu R, Preuss D (2006) Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol 6:7

    Article  PubMed  Google Scholar 

  • Pennell RI, Roberts R (1990) Sexual development in pea is presaged by altered expression of arabinogalactan protein. Nature 344:547–549

    Article  Google Scholar 

  • Portereiko MF, Sandaklie-Nikolova L, Lloyd A, Dever CA, Otsuga D, Drews GN (2006) Nuclear Fusion Defective1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization. Plant Physiol 141:957–965

    Article  PubMed  CAS  Google Scholar 

  • Punwani J, Drews G (2008) Development and function of the synergid cell. Sex Plant Reprod 21:7–15

    Article  Google Scholar 

  • Punwani JA, Rabiger DS, Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–2568

    Article  PubMed  CAS  Google Scholar 

  • Punwani JA, Rabiger DS, Lloyd A, Drews GN (2008) The MYB98 subcircuit of the synergid gene regulatory network includes genes directly and indirectly regulated by MYB98. Plant J 55:406–414

    Article  PubMed  CAS  Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159:565–583

    Article  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    Article  PubMed  CAS  Google Scholar 

  • Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D (2005) A novel class of MYB factors controls sperm-cell formation in plants. Curr Biol 15:244–248

    Article  PubMed  CAS  Google Scholar 

  • Rotman N, Gourgues M, Guitton AE, Faure JE, Berger F (2008) A dialogue between the Sirène pathway in synergids and the fertilization independent seed pathway in the central cell controls male gamete release during double fertilization in Arabidopsis. Mol Plant 1:659–666

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388

    Article  Google Scholar 

  • Russell SD, Dresselhaus T (2008) Deciphering molecular mechanisms of fertilization in seed plants. Sex Plant Reprod 21:1

    Article  Google Scholar 

  • Russell SD, Strout GW (2005) Microgametogenesis in Plumbago zeylanica (Plumbaginaceae). 2. Quantitative cell and organelle dynamics of the male reproductive cell lineage. Sex Plant Reprod 18:113–130

    Article  Google Scholar 

  • Russell SD, Rougier M, Dumas C (1990) Organization of the early post-fertilization megagametophyte of Populus deltoides. Ultrastructure and implications for male cytoplasmic transmission. Protoplasma 155:153–165

    Article  Google Scholar 

  • Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN (2007) Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Tanaka I (2007) Detection of differentially expressed variant histone H3.3 in the vegetative nucleus of lily pollen. Sex Plant Reprod 20:27–33

    Article  CAS  Google Scholar 

  • Schiøtt M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Aacd Sci USA 101:9502–9507

    Article  Google Scholar 

  • Singh M, Bhalla P, Russell S (2008) Molecular repertoire of flowering plant male germ cells. Sex Plant Reprod 21:27–36

    Article  CAS  Google Scholar 

  • Southworth D, Kwiatkowski S (1996) Arabinogalactan proteins at the cell surface of Brassica sperm and Lilium sperm and generative cells. Sex Plant Reprod 9:269–272

    Article  CAS  Google Scholar 

  • Spielman M, Scott R (2008) Polyspermy barriers in plants: from preventing to promoting fertilization. Sex Plant Reprod 21:53–65

    Article  Google Scholar 

  • Steffen JG, Kang IH, MacFarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    Article  PubMed  CAS  Google Scholar 

  • Tian HQ, Russell SD (1997) Micromanipulation of male and female gametes of Nicotiana tabacum: II. Preliminary attempts for in vitro fertilization and egg cell culture. Plant Cell Rep 16:657–661

    Article  CAS  Google Scholar 

  • Tian HQ, Russell SD (1998) The fusion of sperm cells and the function of male germ unit (MGU) of tobacco (Nicotiana tabacum L.). Sex Plant Reprod 11:171–176

    Article  CAS  Google Scholar 

  • Tian HQ, Yuan T, Russell SD (2005) Relationship between double fertilization and the cell cycle in male and female gametes of tobacco. Sex Plant Reprod 17:243–252

    Article  Google Scholar 

  • Twell D (2006) A blossoming romance: gamete interactions in flowering plants. Nature Cell Biol 8:14–16

    Article  PubMed  CAS  Google Scholar 

  • von Besser K, Frank AC, Johnson MA, Preuss D (2006) Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761–4769

    Article  Google Scholar 

  • Wagner R, Mugnaini S, Sniezko R, Hardie D, Poulis B, Nepi M, Pacini E, von Aderkas P (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex Plant Reprod 20:181–189

    Article  CAS  Google Scholar 

  • Wang YY, Kuang A, Russell SD, Tian HQ (2006) In vitro fertilization as a tool for investigating sexual reproduction of angiosperms. Sex Plant Reprod 19:103–115

    Article  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16:S107–S118

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Friedman WE (2004) The four-celled female gametophyte of Illicium (Illiciaceae; Austrobaileyales): implications for understanding the origin and early evolution of monocots, eumagnoliids, and eudicots. Am J Bot 91:332–351

    Article  Google Scholar 

  • Yu HS, Russell SD (1993) Three-dimensional ultrastructure of generative cell mitosis in the pollen tube of Nicotiana tabacum. Eur J Cell Biol 61:338–348

    PubMed  CAS  Google Scholar 

  • Yu HS, Russell SD (1994) Occurrence of mitochondria in the nuclei of tobacco sperm cells. Plant Cell 6:1477–1484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russell, S.D. (2010). Fertilization in Angiosperms. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_14

Download citation

Publish with us

Policies and ethics