Advertisement

Granular Computing for Web Intelligence

  • Yiyu Yao
  • Ning Zhong
Part of the Studies in Computational Intelligence book series (SCI, volume 223)

Abstract

The World Wide Web, or simply the Web, is a large-scale and complex system that humans created in recent years. The Web brings opportunities and challenges for academic and industry communities and almost everyone on this planet as well. Due to its huge scale and complexity, one may find that it is impossible to search for simple theories and models for explaining the Web. Instead, more complicated theories and methodologies are needed, so that the Web can be examined from various perspectives. There are two purposes of the this chapter. One is to present an overview of the triarchic theory of granular computing, and the other is to examine granular computing perspectives on Web Intelligence (WI).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhong, N., Liu, J., Yao, Y.Y., Ohsuga, S.: Web Intelligence (WI). In: Proceedings of the 24th IEEE Computer Society International Computer Software and Applications Conference, pp. 469–470 (2000)Google Scholar
  2. 2.
    Yao, Y.Y., Zhong, N., Liu, J., Ohsuga, S.: Web Intelligence (WI): research challenges and trends in the new information age. In: Zhong, N., Yao, Y., Liu, J., Ohsuga, S. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 1–17. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Zhong, N., Liu, J., Yao, Y.Y.: In search of the Wisdom Web. IEEE Computer 35, 27–31 (2002)Google Scholar
  4. 4.
    Zhong, N.: Toward Web Intelligence. In: Menasalvas, E., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNCS (LNAI), vol. 2663, pp. 1–14. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Zhong, N., Liu, J., Yao, Y.Y. (eds.): Web Intelligence. Springer, Berlin (2003)zbMATHGoogle Scholar
  6. 6.
    Zhong, N., Liu, J., Yao, Y.Y.: Envisioning intelligent information technologies through the prism of web intelligence. Communications of the ACM 50, 89–94 (2007)CrossRefGoogle Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: Semantic Web, a new form of Web content that is meaningful to computers will unleash a revolution of new possibilities. Scientific American 248, 34–43 (2001)CrossRefGoogle Scholar
  8. 8.
    Berners-Lee, T., Hall, W., Hendler, J.A., O’Hara, K., Shadbolt, N., Weitzner, D.J.: A framework for web science. Foundations and Trends in Web Science 1, 1–130 (2006)CrossRefGoogle Scholar
  9. 9.
    Liu, J.: Web Intelligence (WI): What makes Wisdom Web? In: Proceedings of the International Joint Conferences on Artificial Intelligence, pp. 1596–1701 (2003)Google Scholar
  10. 10.
    Liu, J.: New challenges in the World Wide Wisdom Web (W4) research. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 1–6. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Liu, J.: The World Wide Wisdom Web (W4). In: Bianchi-Berthouze, N. (ed.) DNIS 2003. LNCS (LNAI), vol. 2822, pp. 1–4. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)Google Scholar
  13. 13.
    Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centred information processing. IEEE Transactions On Fuzzy Systems 16, 320–330 (2008)CrossRefGoogle Scholar
  14. 14.
    Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg (2002)zbMATHGoogle Scholar
  15. 15.
    Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Springer, Berlin (2003)zbMATHGoogle Scholar
  16. 16.
    Yao, J.T.: A ten-year review of granular computing. In: Proceedings of the 3rd IEEE Internationational Conference on Granular Computing, pp. 734–739 (2007)Google Scholar
  17. 17.
    Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Yao, Y.Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of the IEEE International Conference on Granular Computing, pp. 85–90 (2005)Google Scholar
  20. 20.
    Yao, Y.Y.: Three perspectives of granular computing. Journal of Nanchang Institute of Technology 25, 16–21 (2006)Google Scholar
  21. 21.
    Yao, Y.Y.: The art of granular computing. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 101–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Yao, Y.Y.: The rise of granular computing. Journal of Chongqing University of Posts and Telecommunication 20, 299–308 (2008)Google Scholar
  23. 23.
    Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Zadeh, L.A.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2, 23–25 (1998)Google Scholar
  25. 25.
    Simon, H.A.: The Sciences of the Artificial. The MIT Press, Massachusetts (1969)Google Scholar
  26. 26.
    Chen, Y.H., Yao, Y.Y.: A multiview approach for intelligent data analysis based on data operators. Information Sciences 178, 1–20 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Capra, F.: The Hidden Connections: A Science for Sustainable Living. Anchor Books, New York (2002)Google Scholar
  28. 28.
    Skyttner, L.: General Systems Theory, Ideas & Applications. World Scientific, Singapore (2001)Google Scholar
  29. 29.
    Capra, F.: The Web of Life. Anchor Books, New York (1997)Google Scholar
  30. 30.
    Ledgard, H.F., Gueras, J.F., Nagin, P.A.: PASCAL with Style: Programming Proverbs. Hayden Book Company, Rechelle Park (1979)Google Scholar
  31. 31.
    Solso, R.L., MacLin, M.K., MacLin, O.H.: Cognitive Psychology, 7th edn. Allyn and Bacon, New York (2005)Google Scholar
  32. 32.
    Zhang, L., Zhang, B.: The quotient space theory of problem solving. Fundamenta Informatcae 59, 287–298 (2004)zbMATHGoogle Scholar
  33. 33.
    Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)Google Scholar
  34. 34.
    Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular computing: a rough set approach. Computational Intelligence 17, 514–544 (2001)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Polkowski, L., Semeniuk-Polkowska, M.: On foundations and applications of the paradigm of granular rough computing. International Journal of Cognitive Informatics and Natural Intelligence 2, 80–94 (2008)Google Scholar
  36. 36.
    Liu, J., Tsui, K.C.: Toward nature-inspired computing. Communications of the ACM 49, 59–64 (2006)CrossRefGoogle Scholar
  37. 37.
    Marr, D.: Vision, A Computational Investigation into Human Representation and Processing of Visual Information. W.H. Freeman and Company, San Francisco (1982)Google Scholar
  38. 38.
    Zhong, N.: Representation and construction of ontologies for Web Intelligence. International Journal of Foundations of Computer Science 13, 555–570 (2002)zbMATHCrossRefGoogle Scholar
  39. 39.
    Liu, J., Zhong, N., Yao, Y.Y., Ras, Z.W.: The Wisdom Web: new challenges for Web Intelligence (WI). Journal of Intelligence Information Systems 20, 5–9 (2003)CrossRefGoogle Scholar
  40. 40.
    Yao, Y.Y.: Web intelligence: new frontiers of exploration. In: Proceedings of the International Conference on Active Media Technology, pp. 3–8 (2005)Google Scholar
  41. 41.
    Berners-Lee, T., Fischetti, M.: Weaving the Web: the Original Design and Ultimate Destiny of the World Wide Web by its Inventor. Harper, San Francisco (1999)Google Scholar
  42. 42.
    Yao, Y.Y., Zhong, N., Liu, J., Ohsuga, S.: Web Intelligence: exploring structures, semantics, and knowledge of the Web. Knowledge-Based Systems, 175–177 (2004)Google Scholar
  43. 43.
    Yao, Y.Y.: Information retrieval support systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 773–778 (2002)Google Scholar
  44. 44.
    Yao, Y.Y.: Granular computing for the design of information retrieval support systems. In: Wu, W., Xiong, H., Shekhar, S. (eds.) Clustering and Information Retrieval, pp. 299–329. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  45. 45.
    Yao, J.T., Yao, Y.Y.: Web-based information retrieval support systems: building research tools for scientists in the new information age. In: Proceedings of the IEEE/WIC International Conference on Web Intelligence, pp. 570–573 (2003)Google Scholar
  46. 46.
    Yao, Y.Y., Zeng, Y., Zhong, N.: Supporting literature exploration with granular knowledge structures. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 182–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  47. 47.
    van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)Google Scholar
  48. 48.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yiyu Yao
    • 1
  • Ning Zhong
    • 2
  1. 1.Department of Computer Science, University of Regina, Saskatchewan, Canada, S4S 0A2 The International WIC Institute/BJUT,Regina 
  2. 2.Department of Life Science and Informatics, Maebashi Institute of Technology, Japan, 460-1 Kamisadori-Cho, Maebashi-City 371-0816, Japan The International WIC Institute/BJUT 

Personalised recommendations