Skip to main content

Investigation of the Correlation of Entropy Waves and Acoustic Emission in Combustion Chambers

  • Chapter
  • First Online:
Combustion Noise

Abstract

The entropy noise mechanism was experimentally investigated under clearly defined flow and boundary conditions on a dedicated test setup. Previous experimental research on the topic of entropy noise could draw only indirect conclusions on the existence of entropy noise due to the complexity of the physical mechanism. In order to reduce this complexity, a reference test rig has been set up within this work. In this test rig well controlled entropy waves were generated by electrical heating. The noise emission of the entropy waves accelerated in an adjacent nozzle flow was measured accurately and therewith an experimental proof of entropy noise could be accomplished. In addition to this, a parametric study on the quantities relevant for entropy noise was conducted. The results were compared to a one-dimensional theory byMarble& Candel. In a next step investigations on a combustor test rig showed a broadband noise generation mechanism in the frequency range between 1 and 3.2 kHz. The combustor rig was set up with a similar outletnozzle geometry like the reference test rig (EWG) and provided therefore outletboundary conditions like in real-scale aero-engines (outlet Mach number = 1.0). It was found that this broadband noise has a strong dependency on the nozzle Mach number in the combustor outlet. The summed-up broadband sound pressure level increases exponential with the nozzle Mach number. However, investigations of comparable cold flow conditions did not show this behavior. Since the results of the reference experiment with artificially generated entropy waves did not show this exponential increase with the nozzle Mach number, this leaves the conclusion that this additional noise is generated by the interaction of small-scale fluctuations, e.g. in entropy or vorticity, with the turbulent nozzle flow in the combustion chamber outlet nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali G, Hunter JK (2000) The resonant interaction of sound waves with a large amplitude entropy wave. SIAM J Appl Math 61(1):131–148

    Article  MATH  MathSciNet  Google Scholar 

  2. Bake F (2007) Experimental investigation of the fundamental entropy noise mechanism in aero–engines. In: 8th ONERA-DLR Aerospace Symposium, ODAS 2007, Göttingen, Germany

    Google Scholar 

  3. Bake F, Michel U, Röhle I, Liu M, Aigner M, Noll B, Richter C, Thiele F (2004) Untersuchung zur Entstehung und Bedeutung von Entropielärm an einer Modellbrennkammer. In: 11. Workshop Physikalische Akustik, Bad Honnef, Germany

    Google Scholar 

  4. Bake F, Michel U, Röhle I (2005) Entropieschall — Experimenteller Nachweis und Beitrag zum Fluglärm. In: 69. Jahrestagung der Deutschen Physikalischen Gesellschaft - Fachverband: Akustik, Berlin, Germany

    Google Scholar 

  5. Bake F, Michel U, Röhle I, Richter C, Thiele F, Liu M, Noll B (2005) Indirect Combustion Noise Generation in Gas Turbines. In: 11th AIAA/CEAS Aeroacoustics Conference, Monterey, CA, 2005-2830

    Google Scholar 

  6. Bake F, Michel U, Röhle I (2006) Investigation of entropy noise in aero-engine combustors. In: ASME Turbo Expo 2006, ASME, Barcelona, Spain, GT2006-90093

    Google Scholar 

  7. Bake F, Fischer A, Kings N, Röhle I (2007) Experimental investigation of the fundamental entropy noise mechanism in aero-engines. In: 11th CEAS-ASC Workshop & 2nd Scientific Workshop of X3-Noise: Experimental and Numerical Analysis and Prediction of Combustion Noise, Instituto Superior Tecnico, Lisbon, Portugal

    Google Scholar 

  8. Bake F, Michel U, Röhle I (2007) Entropieschall - Eine Parameterstudie zur Entstehung von indirektem Verbrennungsschall. In: DAGA 2007, DEGA, Stuttgart, Germany, DAGA2007/435

    Google Scholar 

  9. Bake F, Michel U, Röhle I (2007) Experimental investigation of the fundamental entropy noise mechanism in aero-engines. In: 13th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, 2007-3694

    Google Scholar 

  10. Bake F, Michel U, Röhle I (2007) Fundamental mechanism of entropy noise in aero-engines: Experimental investigation. In: ASME Turbo Expo 2007, ASME, Montreal, Canada, GT2007-27300

    Google Scholar 

  11. Bake F, Michel U, Röhle I (2007) Investigation of entropy noise in aero-engine combustors. Journal of Engineering for Gas Turbines and Power 129(2):370–376

    Article  Google Scholar 

  12. Bake F, Kings N, Fischer A, Röhle I (2008) Noise generation by accelerated flow inhomogenities — indirect combustion noise. In: International Conference on Jets, Wakes and Separated Flows, ICJWSF-2008, Technische Universität Berlin, Berlin, Germany

    Google Scholar 

  13. Bake F, Kings N, Röhle I (2008) Fundamental mechanism of entropy noise in aero-engines: Experimental investigation. Journal of Engineering for Gas Turbines and Power 130(1):011,202–1–011,202–6

    Article  Google Scholar 

  14. Bake F, Kings N, Fischer A, Röhle I (2009) Experimental investigation of the entropy noise mechanism in aero-engines. International Journal of Aeroacoustics 8(1 and 2):125–142

    Article  Google Scholar 

  15. Bake F, Kings N, Fischer A, Röhle I (2009) Indirect combustion noise: Investigations of noise generated by the acceleration of flow inhomogeneities. Acta Acustica united with Acustica Submitted for publication

    Google Scholar 

  16. Bake F, Richter C, Mühlbauer B, Kings N, Röhle I, Thiele F, Noll B (2009) The entropy wave generator (EWG): A reference case on entropy noise. J Sound Vibration Submitted for publication

    Google Scholar 

  17. Bloy AW (1979) The pressure waves produced by the convection of temperature disturbances in high subsonic nozzle flows. J Fluid Mech 94:465–475, part 3

    Article  MATH  Google Scholar 

  18. Bohn MS (1976) Noise produced by the interaction of acoustic waves and entropy waves with high-speed nozzle flows. PhD thesis, California Institute of Technology, Pasadena, California, USA

    Google Scholar 

  19. Bohn MS (1977) Response of a subsonic nozzle to acoustic and entropy disturbances. J Sound Vibration 52(2):283–297

    Article  Google Scholar 

  20. Chu BT, Kovasznay LSG (1958) Non-linear interactions in a viscous heat–conducting compressible gas. J Fluid Mech 3:494–514, part 5

    Article  MathSciNet  Google Scholar 

  21. Chung JY (1977) Rejection of flow noise using coherence function method. Journal of the Acoustical Society of America 62:388–395

    Article  Google Scholar 

  22. Cumpsty NA (1979) Jet engine combustion noise: Pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition. J Sound Vibration 66(4):527–544

    Article  MATH  Google Scholar 

  23. Cumpsty NA, Marble FE (1977) Core noise from gas turbine exhausts. J Sound Vibration 54(2):297–309

    Article  Google Scholar 

  24. Cumpsty NA, Marble FE (1977) The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. Proc R Soc Lond A (357):323–344

    Google Scholar 

  25. Dowling AP (1995) The calculation of thermoacoustic oscillations. J Sound Vibration 180(4):557–581

    Article  Google Scholar 

  26. Dowling AP (1996) Acoustics of unstable flows. In: Tatsumi T, Watanabe E, Kambe T (eds) Theoretical and Applied Mechanics, Elsevier, Amsterdam, pp 171–186

    Google Scholar 

  27. Dowling AP (1997) Combustion noise and active control. In: VKI Lecture, VKI

    Google Scholar 

  28. Dowling AP, Hubbard S (2000) Instability in lean premixed combustors. In: Proc. Instn. Mech. Engrs., Vol 214 Part A, IMechE

    Google Scholar 

  29. Eckstein J (2004) On the mechanisms of combustion driven low-frequency oscillations in aero-engines. Dr.-Ing. Dissertation, Technische Universität München, München, Germany

    Google Scholar 

  30. Eckstein J, Freitag E, Hirsch C, Sattelmayer T (2004) Experimental study on the role of entropy waves in low-frequency oscillations for a diffusion burner. In: ASME Turbo Expo 2004, ASME, Vienna, Austria, GT2004-54163

    Google Scholar 

  31. Ffowcs Williams JE, Howe MS (1975) The generation of sound by density inhomogeneities in low Mach number nozzle flows. J Fluid Mech 70:605–622, part 3

    Article  MATH  Google Scholar 

  32. Fischer A, Bake F, Röhle I (2008) Broadband entropy noise phenomena in a gas turbine combustor. In: ASME Turbo Expo 2008, ASME, Berlin, Germany, GT2008-50263

    Google Scholar 

  33. Flemming F, Olbricht C, Wegner B, Sadiki A, Janicka J, Bake F, Michel U, Lehmann B, Röhle I (2005) Analysis of Unsteady Motion with Respect to Noise Sources in a Gas Turbine Combustor: Isothermal Flow Case. Flow, Turb Combust 75(1-4):3–27

    Article  MATH  Google Scholar 

  34. Guedel A, Farrando A (1986) Experimental study of turboshaft engine core noise. J Aircraft 23(10):763–767

    Article  Google Scholar 

  35. Howe MS (1975) Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J Fluid Mech 71:625–673, part 4

    Article  MATH  MathSciNet  Google Scholar 

  36. Keller JJ (1995) Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA Journal 33(12):2280–2287

    Article  MATH  Google Scholar 

  37. Keller JJ, Egli W, Hellat J (1985) Thermally induced low-frequency oscillations. Journal of Applied Mathematics and Physics (ZAMP) 36:250–274

    Article  MATH  Google Scholar 

  38. Leyko M, Nicoud F, Poinsot T (2007) Comparison of indirect and direct combustion noise in aircraft engines. In: 11th CEAS-ASC Workshop & 2nd Scientific Workshop of X3-Noise: Experimental and Numerical Analysis and Prediction of Combustion Noise, Instituto Superior Tecnico, Lisbon, Portugal

    Google Scholar 

  39. Lieuwen T (2003) Modeling premixed combustion-acoustic wave interactions: A review. Journal of Propulsion and Power 19(5):765–781

    Article  Google Scholar 

  40. Lieuwen T, Zinn BT (1999) Theoretical investigation of unsteady flow interactions with a planar flame. In: 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, USA, AIAA-99-0324

    Google Scholar 

  41. Lieuwen T, Torres H, Johnson C, Zinn BT (1999) A mechanism of combustion instability in lean premixed gas turbine combustors. In: International Gas Turbine & Aeroengine Congress & Exhibition, ASME, Indianapolis, Indiana, USA, 99-GT-3

    Google Scholar 

  42. Lighthill MJ (1952) On sound generated aerodynamically. Proc R Soc Lond A (211):564–587

    Google Scholar 

  43. Lu HY (1977) An analytical model for entropy noise of subsonic nozzle flow. In: AIAA 4th Aeroacoustic Conference, AIAA, 77-1366

    Google Scholar 

  44. Marble FE, Candel SM (1977) Acoustic disturbances from gas non-uniformities convected through a nozzle. J Sound Vibration 55(2):225–243

    Article  MATH  Google Scholar 

  45. Martinez MM (2006) Determination of combustor noise from a modern regional aircraft turbofan engine. In: 12th AIAA/CEAS Aeroacoustics Conference, Cambridge, Massachusetts, 2006-2676

    Google Scholar 

  46. Mathews DC, Rekos Jr NF, Nagel RT (1977) Combustion noise investigations. Technical Report FAA RD-77-3, Pratt & Whitney Aircraft Group, United Technologies Corporation, East Hartford, Connecticut, USA

    Google Scholar 

  47. Morfey CL (1973) Amplification of aerodynamic noise by convected flow inhomogeneities. J Sound Vibration 31(4):391–397

    Article  Google Scholar 

  48. Mühlbauer B, Noll B, Aigner M (2008) Numerical investigation of entropy noise and its acoustic sources in aero-engines. In: ASME Turbo Expo 2008, ASME, Berlin, Germany, GT2008-50321

    Google Scholar 

  49. Muthukrishnan M, Strahle WC, Neale DH (1978) Separation of Hydrodynamic, Entropy, and Combustion Noise in a Gas Turbine Combustor. AIAA Journal 16(4):320–327

    Article  Google Scholar 

  50. Olbricht C, Flemming F, Sadiki A, Janicka J, Bake F, UMichel, Röhle I (2005) A study of noise generation by turbulent flow instabilities in a gas turbine model combustor. In: ASME Turbo Expo 2005, ASME, Reno-Tahoe, NV, GT2005-69029

    Google Scholar 

  51. Olbricht C, Hahn F, Kühne J, Sadiki A, Janicka J, Bake F, Röhle I (2007) Flow and mixing in a model GT combustor investigated by LES and Monte–Carlo filtered PDF methods. In: ASME Turbo Expo 2007, ASME, Montreal, Canada, GT2007-27270

    Google Scholar 

  52. Polifke W, Paschereit CO, Döbbeling K (2001) Constructive and destructive interference of acoustic and entropy waves in a premixed combustor with a choked exit. The International Journal of Acoustics and Vibration 6(3):135–146

    Google Scholar 

  53. Sattelmayer T (2000) Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. In: ASME Turbo Expo 2000, ASME, Munich, Germany, 2000-GT-0082

    Google Scholar 

  54. Schemel C, Thiele F, Bake F, Lehmann B, Michel U (2004) Sound Generation in the Outlet Section of Gas Turbine Combustion Chambers. In: 10th AIAA/CEAS Aeroacoustics Conference, Manchester, UK, 2004-2929

    Google Scholar 

  55. Strahle WC (1978) Combustion noise. Prog Energy Combust Sci 4(3):157–176, a

    Article  Google Scholar 

  56. Strahle WC, Muthukrishnan M (1980) Correlation of combustor rig sound power data and theoretical basis of results. AIAA Journal 18(3):269–274, article No. 79-0587R

    Article  Google Scholar 

  57. Tanahashi M, Tsukinari S, Saitoh T, Miyauchi T, Choi G, Ikame M, Kishi T, Harumi K, Hiraoka K (2001) On the sound generation and its controls in turbulent combustion field

    Google Scholar 

  58. Zhu M, Dowling AP, Bray KNC (2000) Self excited oscillations in combustors with spray atomisers. In: ASME Turbo Expo 2000, ASME, Munich, Germany, 2000-GT-108

    Google Scholar 

  59. Zukoski EE, Auerbach JM (1976) Experiments concerning the response of supersonic nozzles to fluctuating inlet conditions. Journal of Engineering for Power (75-GT-40):60–63, ASME

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support by the German Research Foundation (DFG) through the research unit FOR 486 “Combustion Noise”. We also would like to thank Prof. Dr. Ulf Michel (DLR) and Dr. Christoph Hirsch (TU Munich) for the profitable and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Bake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bake, F., Fischer, A., Kings, N., Röhle, I. (2009). Investigation of the Correlation of Entropy Waves and Acoustic Emission in Combustion Chambers. In: Schwarz, A., Janicka, J. (eds) Combustion Noise. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02038-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02038-4_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02037-7

  • Online ISBN: 978-3-642-02038-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics