Skip to main content

Crack Modelling

  • Chapter
Cracked Rotors

A Review about Crack Modelling

Cracked rotating shafts have been the object of studies and investigations since the 1970s, even if some failure cases are also reported during the 1950s (see section 1.2), therefore now we have a story lasting about 50 years. Important achievements have been made during these years, the knowledge of the dynamical behaviour of cracked rotors has allowed the presence of cracks to be recognized and cracked rotors to be stopped in time before catastrophic failures. Accurate inspections revealed that cracks had already propagated up to a depth of almost 50% of the diameter in many shafts (see for instance figure 2.15), which is obviously a very critical situation. Bearing in mind the fact that it is generally believed that propagating velocity increases exponentially, in many of these cases some further days of operation would have been sufficient to provoke a catastrophic failure, with the loss of the complete machine train and high risks for people and other equipment; also the loss of production of the unit, before the replacement with a new unit, is a comparable economic loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wauer, J.: On the dynamics of cracked rotors: a literature survey. Applied Mechanics Review 43(1), 13–17 (1990)

    Google Scholar 

  2. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration 160(2), 313–332 (1993)

    Article  MATH  Google Scholar 

  3. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Engineering Fracture Mechanics 55(5), 831–857 (1996)

    Article  Google Scholar 

  4. Sabnavis, G., Kirk, R.G., Kasarda, M., Quinn, D.: Cracked shafts detection and diagnostics: a literature review. The Shock and Vibration Digest 36(4), 287–296 (2004)

    Article  Google Scholar 

  5. Bachschmid, N., Pennacchi, P.: Special Issue: Crack effects in rotordynamics. Mechanical Systems and Signal Processing 22(4), 761–762 (2008)

    Article  Google Scholar 

  6. Inglis, C.E.: Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Institution of Naval Architects 55, 219–230 (1913)

    Google Scholar 

  7. Griffith, A.A.: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A221, 163–198 (1920)

    Google Scholar 

  8. Irwin, G.R.: Fracture Dynamics. In: Fracturing of Metals, pp. 147–166. American Society for Metals, Cleveland (1948)

    Google Scholar 

  9. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics 24, 361–364 (1957)

    Google Scholar 

  10. Williams, M.L.: On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics 24, 109–114 (1957)

    MATH  Google Scholar 

  11. Zienkiewicz: The finite element method, 4th edn. McGraw-Hill Co., New York (1987)

    Google Scholar 

  12. Barsoum, R.S.: On the Use of isoparametric finite elements in linear fracture mechanics. International Journal for Numeric Methods in Engineering 10, 25–37 (1976)

    Article  MATH  Google Scholar 

  13. Henshell, R.D., Shaw, K.G.: Crack tip elements are unnecessary. International Journal for Numeric Methods in Engineering 9, 495–507 (1975)

    Article  MATH  Google Scholar 

  14. Manu, C.: Quarter-point elements for curved cracks fronts. Computer & Structures 17, 227–231 (1983)

    Article  MATH  Google Scholar 

  15. Pang, H.L.J.: Linear elastic fracture mechanics benchmarks: 2D finite element test cases. Engineering Fracture Mechanics 44(5), 741–751 (1993)

    Article  Google Scholar 

  16. Broek, D.: The practical use of fracture mechanics, pp. 271–274. Kluwer Academic Publishers, Dordrecht (1989)

    Google Scholar 

  17. Hartranft, R.J., Sih, G.C.: Stress singularity for a crack with an arbitrarily curved front. Engineering Fracture Mechanics 9(3), 705–718 (1977)

    Article  Google Scholar 

  18. Parks, D.M.: A stiffness derivative finite element technique for determination of elastic crack tip stress intensity factor. International Journal of Fracture 10, 487–502 (1974)

    Article  Google Scholar 

  19. Suresh: Fatigue of materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  20. Buch, A.: Fatigue data handbook. John Wiley and Sons, Chichester (1998)

    Google Scholar 

  21. Paris, P.C., Erdogan, F.: A critical analysis of crack propagation laws. Journal of Basic Engineering 85, 528–534 (1960)

    Google Scholar 

  22. Elber, W.: Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics 2, 37–45 (1970)

    Article  Google Scholar 

  23. Dentsoras, A.J., Dimarogonas, A.D.: Fatigue Crack Propagation in Resonating Structures. Engineering Fracture Mechanics 34(3), 721–728 (1989)

    Article  Google Scholar 

  24. Shih, Y., Chen, J.: Analysis of Fatigue Crack Growth on a Cracked Shaft. International Journal of Fatigue 19(6), 477–485 (1997)

    Article  Google Scholar 

  25. Gasch, R.: Dynamic behaviour of a simple rotor with a cross-sectional crack. In: IMechE Conf. Vibration in Rotating Machinery, paper C 178/76, Cambridge, UK, September 1976, pp. 123–128 (1976)

    Google Scholar 

  26. Mayes, I.W., Davies, W.G.R.: The vibrational behaviour of a rotating shaft system containing a transverse crack. In: IMechE Conf. Vibration in Rotating Machinery, paper C168/76, Cambridge, UK, September 1976, pp. 53–64 (1976)

    Google Scholar 

  27. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending longitudinal and torsional vibrations of a cracked rotor. Journal of Sound and Vibration 269(1-2), 33–60 (2004)

    Article  Google Scholar 

  28. Papadopoulos, C.A.: Some comments on the calculation of the local flexibility of cracked shafts. Journal of Sound and Vibration 278(4-5), 1205–1211 (2004)

    Article  Google Scholar 

  29. Wu, X., Friswell, M.I., Sawicki, J.T.: Finite element analysis of coupled lateral and torsional vibrations of a rotor with multiple cracks. Proceedings of ASME Turbo Expo 2005 Gas Turbine Technology: Focus for the Future 4, 841–850 (2005)

    Google Scholar 

  30. Varé, C., Andrieux, S.: Cracked beam section model applied to turbine rotors. In: ISCORMA Int. Symposium on Stability Control of Rotating Machinery, South Lake Tahoe, California, USA (August 2001)

    Google Scholar 

  31. Papadopoulos, C.A.: The strain energy release approach for modeling cracks in rotors: A state of the art review. Mechanical Systems and Signal Processing 22(4), 763–789 (2008)

    Article  Google Scholar 

  32. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of cracked shafts in bending. Journal of Sound and Vibration 91(4), 583–593 (1983)

    Article  MATH  Google Scholar 

  33. Chasalevris, A.C., Papadopoulos, C.A.: Identification of multiple cracks under bending Mechanical Systems and Signal Processing 20(7), 1631–1673 (2006)

    Google Scholar 

  34. Andrieux, S., Varé, C.: A 3D cracked beam model with unilateral contact. Application to rotors 21, 793–810 (2002)

    MATH  Google Scholar 

  35. Code_Aster@, Numerical simulation software for structural analysis (2006), http://www.code-aster.org

  36. Yamamoto, T., Ishida, Y.: Linear and nonlinear rotordynamics. John Wiley & Sons, Inc., New York (2001)

    Google Scholar 

  37. Muszyńska, A.: Rotordynamics. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  38. Theis, W.: Längs- und Torsionsschwingungen bei quer angerissenen Wellen (Longitudinal and torsional vibrations of rotating shafts with a transverse crack). VDI-Verlag series 11(131), Düsseldorf (1990)

    Google Scholar 

  39. Gasch, R., Person, M., Weitz, B.: Dynamic behaviour of the Laval rotor with a cracked hollow shaft – a comparison of crack models. In: IMechE Conf. Vibration in Rotating Machinery, paper C314/88, Edinburgh, UK (September 1988)

    Google Scholar 

  40. Schmalhorst, B.: Experimentelle und theoretische Untersuchung zum Schwingungsverhalten angerissener Rotoren (Experimental and theoretical approach to the vibrational behaviour of cracked rotors). VDI-Forschungs-berichte series 11(117), DĂĽsseldorf

    Google Scholar 

  41. Mayes, I.W., Davies, W.G.R.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. Journal of Vibration, Acoustics, Stress and Reliability in Design 106, 139–145 (1984)

    Google Scholar 

  42. Friedmann, P.P.: Numerical methods for the treatment of periodic systems with applications to structural dynamics and helicopter rotor dynamics. Computer & Structures 35(4), 329–347 (1990)

    Article  MATH  Google Scholar 

  43. Jordan, D.W., Smith, P.: Nonlinear Ordinary Equation- An Introduction to Dynamical System, 3rd edn. Oxford University Press, Oxford (1999)

    Google Scholar 

  44. Meng, G., Gasch, R.: Stability and stability degree of a cracked flexible rotor supported on journal bearings. ASME Journal of Vibration and Acoustics 122, 116–125 (2000)

    Article  Google Scholar 

  45. Meng, G., Gasch, R.: Stabilität eines gleitgelagerten, einfachen Rotors mit Riß (Stability of a cracked rotor in fluidfilm bearings). SIRM-Tagung “Schwingungen in rotierenden Maschinen, Wien (February 1992)

    Google Scholar 

  46. HiĂź, F.: Nichtlineare Dynamik und Zustandsbeobachtung gleitgelagerter elastischer Rotoren mit angerissenem Wellenquerschnitt (Nonlinear dynamics and monitoring of flexible rotors in fluidfilm bearings having a transverse crack). Dissertation TU Berlin (1996)

    Google Scholar 

  47. Sanderson, A.F.P.: The vibration behaviour of a large steam turbine generator during crack propagation through the generator rotor. In: IMechE Conf. Vibration in Rotating Machinery, paper C 432/102, Bath, UK (September 1992)

    Google Scholar 

  48. Allianz-Berichte: Schwingungsüberwachung von Turbosätzen – ein Weg zur Erkenntnis von Wellenrissen (Vibration monitoring in turbosets – A way to early crack detection). Bericht 24 (1987)

    Google Scholar 

  49. Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. John Wiley & Sons Inc., Chichester (1998)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachschmid, N., Pennacchi, P., Tanzi, E. (2010). Crack Modelling. In: Cracked Rotors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01485-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01485-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01484-0

  • Online ISBN: 978-3-642-01485-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics