Skip to main content

Finding a Suitable CO2 Response Algorithm for Crop Growth Simulation in Germany

  • Conference paper
Crop Modeling and Decision Support

Abstract

A soil-crop-environment model was used to describe the combined effects of atmospheric carbon dioxide concentration [CO2], temperature and precipitation on different agricultural crop species. Within this model, a set of algorithms describing CO2 response to photosynthesis and crop water use efficiency, which were different in complexity and parameter requirements, was tested for its suitability to explain crop growth responses and soil water dynamics observed over six years in a crop rotation (winter barley, sugar beet and winter wheat) with two cycles under normal and elevated atmospheric CO2 levels (FACE experiment; Weigel and Dämmgen, 2000).

All algorithms were able to describe an observed increase in above-ground dry matter for all crops in the rotation, with Willmott’s Index of Agreement (IoA) ranging between 0.93 and 0.99. Increasing water use efficiency with rising CO2 was also successfully portrayed (IoA 0.80 − 0.86). A combination of a semi-empirical Michaelis-Menten approach, describing a direct impact of CO2 on photosynthesis, and a Penman-Monteith approach with a simple stomata conduction model for evapotranspiration yielded the best simulation result. This combination is therefore considered suitable for the description of yield responses to rising [CO2] at the regional level. However, the performance of all tested algorithms was only marginally different, at 550 ppm CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acock, B. (1991) Modeling canopy photosynthetic response to carbon dioxide, light interception, temperature and leaf traits. p. 41–55. In K.J. Boote and R.S. Loomis (ed.) Modeling crop photosynthesis — from biochemistry to canopy. Crop Science Society of America, American Society of Agronomy, Anaheim, California, USA.

    Google Scholar 

  • Acock, B., J.H.M. Thornley, and J.W. Wilson. (1971) Photosynthesis and energy conversion. p. 43–75. In Wareing P.F. and Cooper J.P. (ed.) Potential crop production. Heinemann Educational Publishers, London, UK.

    Google Scholar 

  • Bodenkunde AG. (1994) Bodenkundliche Kartieranleitung. E. Schweizerbartsche Verlagsbuchhandlung, Hannover.

    Google Scholar 

  • Allen, R.G., Pereira L.S., Raes D. et al. (1998) Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Roma.

    Google Scholar 

  • Anderson, J.L., Balaji V., A.J. Broccoli, et al.Global Atmospheric Model Dev. (2004) The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Clim. 17(24):4641–4673.

    Article  Google Scholar 

  • Ball, J.T., Woodrow I.E., and Berry J.A.. (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. p. 221–224. In I. Biggins (ed.) Progress in photosynthesis research. Martinus Nijhoff Publishers, The Netherlands.

    Google Scholar 

  • Bindi, M., Fibbi L., Gozzini B., et al.(1996) Modeling the impact of future climate scenarios on yield and yield variability of grapevine. Clim. Res. 7:213–224.

    Article  Google Scholar 

  • Buckley, T., Mott K., and Farquhar G.D..(2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ. 26(10):1767–1785.

    Article  CAS  Google Scholar 

  • Bykov, O.D., Koshkin V.A., and Catsky J.(1981) Carbon dioxide compensation concentration of C-3 and C-4 plants — Dependence on temperature. Photosynthetica 15(1):114–121.

    CAS  Google Scholar 

  • Collatz, G.J., Ball J.T., Grivet C., et al.(1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration — A model that includes a laminar boundary layer. Agric. For. Metorol. 54(2–4):107–136.

    Article  Google Scholar 

  • Cowan, I. (1977) Stomatal behaviour and environment. Adv. Bot. Res. 4:117–228.

    Article  Google Scholar 

  • Dewar, R.C. (1995) Interpretation of an empirical model for stomatal conductance in terms of guard cell function. Plant Cell Environ. 18(4):365–372.

    Article  Google Scholar 

  • Dewar, R.C. (2002) The Ball-Berry-Leuning and Tardieu-Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ. 25(11):1383–1398.

    Article  Google Scholar 

  • Dubrovsky, M. (1997) Creating daily weather series with use of the weather generator. Environmetrics 8(5):409–424.

    Article  Google Scholar 

  • Eckersten, H., Jansson P.E.(1991) Modeling water flow, nitrogen uptake and production of wheat. Fert. Res. 27:313–329.

    Article  CAS  Google Scholar 

  • Ewert, F., Rodriguez D., Jamieson P., et al.(2002) Effects of elevated CO2 and drought on wheat: testing crop simulation models for different experimental and climatic conditions. Agr. Ecosyst. Environ. 93(1–3):249–266.

    Article  Google Scholar 

  • Farquhar, G.D., S. von Caemmerer. (1982) Modeling of photosynthetic response to environmental conditions. p. 549–587. In O.L. Lange et al. (ed.) Encyclopedia of plant physiology. New series. Volume 12B. Physiological plant ecology. II. Water relations and carbon assimilation.

    Google Scholar 

  • Farquhar, G.D., S. von Caemmerer, and J.A. Berry. (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Wong S.C.(1984) An empirical model of stomatal conductance. Austr. J. Plant Physiol. 11(3):191–209.

    Article  CAS  Google Scholar 

  • Gaastra, P. (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Mededel. Landbouwhogesch. Wageningen 59(13):1–68.

    Google Scholar 

  • Gao, Q., Zhao P., Zeng X., et al. (2002) A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell Environ. 25(11):1373–1381.

    Article  Google Scholar 

  • Gerwitz, A., Page E.R.(1974) An empirical mathematical model to describe plant root systems. J. Apl. Ecol. 11:773–781.

    Article  Google Scholar 

  • Goudriaan, J., H.H. van Laar. (1978) Relations between leaf resistance, CO2 concentration and CO2 assimilation in maize, beans, lalang grass and sunflower. Photosynthetica 12(3):241–249.

    CAS  Google Scholar 

  • Goudriaan, J., H.H. van Laar. (1994) Modeling potential crop growth processes. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Greenwood, D.J., D.A. Stone, and A. Draycott. 1990. Weather, nitrogen supply and growth rate of field vegetables. Plant Soil 124(2):297–301.

    Article  CAS  Google Scholar 

  • Harley, P.C., Weber J.A., and Gates D.M. (1985) Interactive effects of light, leaf temperature, CO2 and O2 on photosynthesis in soybean. Planta 165(2):249–263.

    Article  CAS  Google Scholar 

  • Hoffmann, F. (1995) Fagus, a model for growth and development of beech. Ecol. Mod. 83(3):327–348.

    Article  CAS  Google Scholar 

  • Hoogenboom, G., Jones J.W., and Boote K.J. (1992) Modeling growth, development, and yield of grain legumes using Soygro, Pnutgro, and Beangro — A review. Trans. ASAE 35(6):2043–2056.

    Google Scholar 

  • IPCC. (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Jacob, D., L. Barring, O.B. Christensen, et al.(2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim. Change 81:31–52.

    Article  Google Scholar 

  • Jamieson, P.D., M.A. Semenov. (2000) Modeling nitrogen uptake and redistribution in wheat. Field Crops Res. 68(1):21–29.

    Article  Google Scholar 

  • Jarvis, P.G. (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 273(927):593–610.

    Article  CAS  Google Scholar 

  • Johns, T.C., Durman C.F., Banks H.T. et al.(2006) The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Clim. 19(7):1327–1353.

    Article  Google Scholar 

  • Kersebaum, K.C. (2007) Modeling nitrogen dynamics in soil-crop systems with HERMES. Nutr. Cycl. Agroecosys. 77(1):39–52.

    Article  Google Scholar 

  • Kersebaum, K.C. (1995) Application of a simple management model to simulate water and nitrogen dynamics. Ecol. Mod. 85:145–156.

    Article  Google Scholar 

  • Kersebaum, K.C., Beblik A.J. (2001) Performance of a nitrogen dynamics model applied to evaluate agricultural management practices. p. 549–569. In M.J. Shaffer et al. (ed.) Modeling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton, FL, USA.

    Google Scholar 

  • Kersebaum, K.C., Hecker J.-M., Mirschel W. et al..(2007) Modeling water and nutrient dynamics in soil-crop systems: a comparison of simulation models applied on common data sets.-in press. In K.C. Kersebaum et al. (ed.) Modeling water and nutrient dynamics in soil crop systems. Springer, Stuttgart.

    Chapter  Google Scholar 

  • Kimball, B.A., Pinter P.J., Garcia R.L., et al.(1995) Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology 1(6):429–442.

    Article  Google Scholar 

  • Leuning, R. (1995) A critical appraisal of a combined stomatal-photosynthesis model for C-3 plants. Plant Cell Environ. 18(4):339–355.

    Article  CAS  Google Scholar 

  • Leuning, R. (1990) Modeling stomatal behavior and photosynthesis of Eucalyptus-Grandis. Austr. J. Plant Physiol. 17(2):159–175.

    Article  Google Scholar 

  • Lewin, K.F., Hendrey G.R., and Kolber Z. (1992) Brookhaven National Laboratory Free-Air Carbon-Dioxide Enrichment Facility. Crit. Rev. Plant Sci. 11(2–3):135–141.

    CAS  Google Scholar 

  • Lobell, D.B., Burke M.B., Tebaldi C. et al. (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610.

    Article  CAS  PubMed  Google Scholar 

  • Long, S.P. (1991) Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations — Has its importance been underestimated. Plant Cell Environ. 14(8):729–739.

    Article  CAS  Google Scholar 

  • Manderscheid, R., Weigel H.J. (2007) Drought stress effects on wheat are mitigated by atmospheric CO2 enrichment. Agron. Sust. Dev. 27(2):79–87.

    Article  Google Scholar 

  • Mitchell, R.A.C., Lawlor D.W., Mitchell V.J. et al. (1995) Effects of elevated CO2 concentration and increased temperature on winter-wheat — Test of ARCWHEAT1 simulation model. Plant Cell Environ. 18(7):736–748.

    Article  CAS  Google Scholar 

  • Nonhebel, S. (1996) Effects of temperature rise and increase in CO2 concentration on simulated wheat yields in Europe. Clim. Change 34(1):73–90.

    Article  CAS  Google Scholar 

  • Olesen, J.E., Bindi M.. (2002) Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16(4):239–262.

    Article  Google Scholar 

  • Plummer, D.A., Caya D., Frigon A. et al. (2006) Climate and climate change over North America as simulated by the Canadian RCM. J. Clim. 19(13):3112–3132.

    Article  Google Scholar 

  • Porter, J. (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to water and nitrogen. Eur. J. Agron. 2(2):69–82.

    Google Scholar 

  • Richter, J., Nuske A., Habenicht W. et al. (1982) Optimized N-mineralization parameters of loess soils from incubation experiments. Plant Soil 68:379–388.

    Article  CAS  Google Scholar 

  • Ritchie, J.T., Otter-Nacke. S. (1985) Description and performance of CERES-Wheat: a user-orientated wheat yield model. ARS Wheat Yield Project, Washington D.C.

    Google Scholar 

  • Rodriguez, D., Ewert. F., Goudriaanet J. et al (2001) Modeling the response of wheat canopy assimilation to atmospheric CO2 concentrations. New Phytol. 150(2):337–346.

    Article  Google Scholar 

  • Semenov M.A., Barrow E.M. (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim. Change 35(4):397–414.

    Article  Google Scholar 

  • Spitters C.J.T., van Kraalingen D.W.G and van Keulen. H. (1989) A Simple and Universal Crop Growth Simulator: SUCROS 87. p. 145–181. In: Rabbinge R et al. (ed.) Simulation and Systems Management in Crop Protection. Pudoc, Wageningen, The Netherlands.

    Google Scholar 

  • Stanghellini, C., Bunce. J.A. (1993) Response of photosynthesis and conductance to light, CO2, temperature and humidity in tomato plants acclimated to ambient and elevated CO2. Photosynthetica 29(4):487–497.

    Google Scholar 

  • Stier, P., Feichter J., Kinne S. et al. (2005) The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys. 5:1125–1156.

    Article  CAS  Google Scholar 

  • Tubiello, F.N., Ewert. F. (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur. J. Agron. 18(1–2):57–74.

    Article  Google Scholar 

  • van Keulen, H., Penning de Vries F.W.T, and Drees. E.M. (1982) A summary model for crop growth. p. 87–97. In: Penning de Vries F.W.T. and van Laar H.H. (ed.) Simulation of plant growth and crop production. PUDOC, Wageningen.

    Google Scholar 

  • Watterson, I.G., Dix M.R., Gordon H.B. et al.. (1995) The CSIRO 9-Level Atmospheric General Circulation Model and its equilibrium present and doubled CO2 climates. Aust. Meteorol. Mag. 44(2):111–125.

    Google Scholar 

  • Weigel, H.J., Dämmgen. U. (2000) The Braunschweig Carbon Projekt: atmospheric flux monitoring and free air carbon dioxide enrichment (FACE). J. Appl. Bot. 74:55–60.

    Google Scholar 

  • Weigel, H.J., Manderscheid R., Burkart S. et al. (2006) Responses of an arable crop rotation system to elevated [CO2]. p. 121–137. In: Nösberger J. et al. (ed.) Managed ecosystems and CO2 case studies, processes, and perspectives. Ecological Studies, Vol. 187.

    Google Scholar 

  • Weigel, H.J., Pacholski A., Burkart S. et al. (2005) Carbon turnover in a crop rotation under free air CO2 enrichment (FACE). Pedosphere 15(6):728–738.

    CAS  Google Scholar 

  • Williams, J.R., Jones C.A., Kiniry J.R. et al.(1989) The EPIC crop growth model. Trans. ASAE 32(2):497–511.

    Google Scholar 

  • Willmott, C.J. (1981) On the validation of models. Phys. Geogr. 2:184–194.

    Google Scholar 

  • Yu, G.R., Kobayashi T., Zhuang J.E. et al.(2003) A coupled model of photosynthesis-transpiration based on the stomatal behavior for maize (Zea mays L.) grown in the field. Plant Soil 249(2):401–416.

    Article  CAS  Google Scholar 

  • Yu, G.R., Zhuang J., and Yu. Z.L. (2001a) An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. J. Plant Physiol. 158(7):861–874.

    Article  CAS  Google Scholar 

  • Yu, Q., Goudriaan J., and Wang T.D. (2001b) Modeling diurnal courses of photosynthesis and transpiration of leaves on the basis of stomatal and non-stomatal responses, including photoinhibition. Photosynthetica 39(1):43–51.

    Article  CAS  Google Scholar 

  • Yu, Q., Zhang Y., Liuet Y. et al. (2004) Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Ann. Bot. 93(4):435–441.

    Article  PubMed  Google Scholar 

  • Ziska, L.H., Bunce J.A. (2007) Predicting the impact of changing CO2 on crop yields: some thoughts on food. New Phytol. 175(4):607–617.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nendel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nendel, C., Kersebaum, K.C., Mirschel, W., Manderscheid, R., Weigel, H.J., Wenkel, K.O. (2009). Finding a Suitable CO2 Response Algorithm for Crop Growth Simulation in Germany. In: Cao, W., White, J.W., Wang, E. (eds) Crop Modeling and Decision Support. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01132-0_4

Download citation

Publish with us

Policies and ethics