Skip to main content
Log in

Modelling nitrogen dynamics in soil–crop systems with HERMES

  • Original paper
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Model runs with HERMES were performed over entire crop rotation cycles for two experimental sites on loamy and sandy soils in Germany with differently managed plots. The model was able to simulate soil water and nitrogen contents on the sandy plots of Müncheberg with an index of agreement (IA)  >0.8 and  >0.69. Crop growth and N-uptake was simulated well with IA values  >0.89 and  >0.75, respectively. For the loess site in Bad Lauchstädt model results for above-ground biomass, storage organ and N-uptake agreed well with observations over a 4-year rotation with IA values of 0.93, 0.94 and 0.71, respectively. Soil mineral nitrogen was significantly overestimated on the cropped plot (IA = 0.45) as well as on the black fallow plot (IA = 0.65) using the default initialization of the decomposable nitrogen pools from the organic matter content. Equilibration of the pools, using data from a neighbouring long term experiment, improved soil mineral nitrogen simulation to an IA of 0.72 for the cropped and 0.91 for the fallow plot. The long term model performance was investigated using data from 1903 to 2002 of four differently managed plots in Bad Lauchstädt. Soil organic carbon, derived from simulated nitrogen pools, showed acceptable results for the unfertilized plot, but a distinct underestimation on plots with farmyard manure application. Simulated historical winter wheat and potato yields were distinctly overestimated during the initial 50 years. Therefore, an adoption of crop parameters for older varieties is necessary. The index of agreement of 0.9 indicates that the annual weather impact on yield fluctuations was correctly reflected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addiscott TM, Whitmore AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J Agric Sci Cambridge 109:141–157

    Google Scholar 

  • Ångström A (1924) Solar and terrestrial radiation. Quart J Roy Meteor Soc 50:121–131

    Google Scholar 

  • Asseng S, van Keulen H, Stol W (2000) Performance and application of the APSIM NWHEAT model in the Netherlands. Eur J Agron 12:37–54

    Article  Google Scholar 

  • Austin RB (1989) Genetic variation in photosynthesis. J Agric Sci Cambridge 112:287–294

    Article  Google Scholar 

  • Bellocci G, Silvestri N, Mazzoncini M, Menini S (2002) Using the CROPSYST model in continous rainfed maize (Zea mais L,) using alternative management options. Ital J Agron 6:43–56

    Google Scholar 

  • AG Boden (1994) Bodenkundliche Kartieranleitung, 4th edn. Schweizerbart, Stuttgart

  • Boons-Prins ER, de Koning GHJ, van Diepen CA, Penning de Vries FWT (1993) Crop specific simulation parameters for yield forecasting across the European Community. Simulation reports CABO-TT, No. 32, Wageningen, The Netherlands

  • Burns IG (1974) A model for predicting the redistribution of salt applied to fallow soils after excess rainfall or evaporation. J Soil Sci 25:165–178

    Article  Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Fox DG (1981) Judging air quality model performance: a summary of the AMS Workshop on dispersion model performance. Bull Am Meteorol Soc 62:599–609

    Article  Google Scholar 

  • Franko U, Puhlmann M, Kuka K, Böhme F, Merbach I (2006) Dynamics of water, carbon and nitrogen in an agricultural used Chernozem soil in Central Germany. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds), Modelling water and nutrient dynamics in soil crop systems. Springer, Stuttgart, Germany (in press)

  • Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline of percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  • Greenwood DJ, Draycott A (1995) Modelling uptake of nitrogen, phosphate and potassium in relation to crop growth. In: Kabat P, Marshall B, van den Broek BJ, Vos J, van Keulen H (eds) Modelling and parameterization of the soil plant system—a comparison of potato growth models. Wageningen Press, Wageningen The Netherlands, pp 155–175

    Google Scholar 

  • Haude W (1955) Zur Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt Dt Wetterd 11:1–24

    Google Scholar 

  • Heger K (1978) Bestimmung der potentiellen Evapotranspiration über unterschiedlichen landwirtschaftlichen Kulturen. Mitt Dtsch Bodenkd Ges 26:21–40

    Google Scholar 

  • Henning F-W (1988) Landwirtschaft und ländliche Gesellschaft in Deutschland. Bd. 2:1750 bis 1986. UTB 774, 2nd edn. Schöningh, Paderborn, Germany

  • Holling CS (1978) Adaptive environmental assessment and management. John Wiley and Sons, New York

    Google Scholar 

  • IIRB (Institut International de Recherches Betteravières) (2003) Sugar beet growth and growth modelling Advances in sugar beet research, Vol. 5. IIRB, Brussels, Belgium

    Google Scholar 

  • Kabat P, Marshall B, van den Broek BJ, Vos J, van Keulen H (eds) (1995) Modelling and parameterization of the soil plant system—a comparison of potato growth models. Wageningen Press, Wageningen, The Netherlands

    Google Scholar 

  • Kersebaum KC (1995) Application of a simple management model to simulate water and nitrogen dynamics. Ecol Model 81:145–156

    Article  CAS  Google Scholar 

  • Kersebaum KC, Beblik AJ (2001) Performance of a nitrogen dynamics model applied to evaluate agricultural management practices. In: Shaffer M, Ma L, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. Lewis Publishers, Boca Raton, USA, pp 549–569

    Google Scholar 

  • Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) (2006) Modelling water and nutrient dynamics in soil crop systems. Springer, Stuttgart, Germany (in press)

  • Kersebaum KC, Lorenz K, Reuter HI, Wendroth O (2002) Modeling crop growth and nitrogen dynamics for advisory purposes regarding spatial variability. In: Ahuja LR, Ma L, Howell TA (eds) Agricultural system models in field research and technology transfer. Lewis Publishers, Boca Raton, USA, pp 229–252

    Google Scholar 

  • Körschens M (ed) (1994) Der statische Düngungsversuch Bad Lauchstädt nach 90 Jahren. B.G. Teubner, Stuttgart, Germany

  • Legates DR, McCabe GJ (1999) Evaluating the use of, goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Res Res 35:233–241

    Article  Google Scholar 

  • Mirschel W, Wenkel K-O, Wegehenkel M, Kersebaum KC, Schindler U, Hecker J-M (2006) Müncheberg field trial data set for agro-ecosystem model validation. In: Kersebaum KC, Hecker J-M, Mirschel W, Wegehenkel M (eds) Modelling water and nutrient dynamics in soil crop systems. Springer, Stuttgart, Germany (in press)

  • Nash JE, Sutcliffe IV (1970) Riverflow forcasting through conceptual model. J Hydrol 273:282–290

    Article  Google Scholar 

  • Nuske A (1983) Ein Modell für die Stickstoff-Dynamik von Acker-Lößböden im Winterhalbjahr-Messungen und Simulationen. Ph.D. Thesis, University of Hannover, Hannover, Germany

  • Powlson DS, Smith P, Coleman K, Smith JU, Glendining MJ, Körschens M, Franko U (1998) A European network of long term sites for studies on soil organic matter. Soil Till Res 47:263–274

    Article  Google Scholar 

  • Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Messfehlers des Hellmann-Niederschlagsmessers. Ber Dtsch Wetterd 159:93

    Google Scholar 

  • Richter J, Nuske A, Habenicht W, Bauer J (1982) Optimized N-mineralization parameters of loess soils from incubation experiments. Plant and Soil 68:379–388

    Article  CAS  Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using data sets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Supit I, Hooijer AA, van Diepen CA (eds) (1994) System description of the WOFOST 6.0 crop simulation model implemented in CGMS. Vol. 1: Theory and Algorithms. EC Publication EUR 15956, Luxemburg

    Google Scholar 

  • van Dobben WH (1962) Influence of temperature and light conditions on dry matter distribution, development rate and yield of arable crops. Neth J Agric Sci 10:37–389

    Google Scholar 

  • van Heemst HDJ (1988) Plant data values required for simple crop growth simulation models: review and bibliography. Simulation reports CABO-TT 17, Centre for Agrobiological research and Agricultural University Wageningen, Wageningen, The Netherlands

  • van Keulen H, Penning de Vries FWT, Drees EM (1982) A summary model for crop growth. In: Penning de Vries FWT, van Laar HH (eds) Simulation of plant growth and crop production. PUDOC, Wageningen, The Netherlands, pp 87–97

    Google Scholar 

  • Kooman PL, Spitters CJT (1995) Coherent set of models to simulate potato growth. In: Kabat P, Marshall B, van den Broek BJ, Vos J, van Keulen H (eds) Modelling and parameterization of the soil plant system—a comparison of potato growth models. Wageningen Press, Wageningen, The Netherlands, pp 253–274

    Google Scholar 

  • Vorderbrügge T (1997) Vergleich von bodenphysikalischen Kennwerten der Bodenkundlichen Kartieranleitung mit gemessenen Werten. Mitt Dtsch Bodenk Ges 85/II: 1267–1270

    Google Scholar 

  • Wegehenkel M, Mirschel W (2006) Crop growth, soil water and nitrogen balance simulation on three experimental field plots using the OPUS model—a case study. Ecol Mod 190:116–132

    Article  Google Scholar 

  • Wendling U, Schellin H-G, Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorol 41:468–475

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 64:1309–1313

    Article  Google Scholar 

Download references

Acknowledgements

This contribution was supported by the German Federal Ministry of Consumer Protection, Food and Agriculture and the Ministry of Agriculture, Environmental Protection and Regional Planning of the Federal State of Brandenburg (Germany). A special thank is given to the data providers from Bad Lauchstädt and Müncheberg Experimental Stations and to the European Science Foundation and COST 718 for sponsoring the model workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Christian Kersebaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersebaum, K.C. Modelling nitrogen dynamics in soil–crop systems with HERMES. Nutr Cycl Agroecosyst 77, 39–52 (2007). https://doi.org/10.1007/s10705-006-9044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-006-9044-8

Keywords

Navigation