Skip to main content

Die mikrobiologische N2-Fixierung (Diazotrophie) in Böden und Rhizosphäre

  • Chapter
Mikrobiologie von Böden

Part of the book series: Springer-Lehrbuch ((SLB))

  • 10k Accesses

Zusammenfassung

Es war Hermann Hellriegel (1831–1895), der im Jahre 1888 die bakterielle Luftstickstoffbindung in den Wurzelknöllchen von Leguminosen entdeckte und die Bedeutung dieses Phänomens für die N-Versorgung von Pflanzen hervorhob. Fast ein Jahrhundert lang wurde die N2-Bindung zwar als ein besonderes, aber unter Prokaryoten sehr begrenzt verbreitetes Phänomen betrachtet. Heute wissen wir, dass die potenzielle Fähigkeit zur N2-Bindung (Diazotrophie) unter den Bacteria, Cyanobacteria und Archaea sehr weit verbreitet ist und keinen Sonderstatus mehr besitzt. Wahrscheinlich ist die Fähigkeit zur N2-Bindung unter den Prokaryoten bisher nur zum geringsten Teil bekannt. Fast täglich werden neue Prokaryoten mit der potenziellen Fähigkeit zur N2-Bindung entdeckt und beschrieben. Inzwischen gehört die potenzielle Fähigkeit zur N2-Bindung ebenso wie die potenzielle Denitrifikation (Kap. 12) und die potenzielle Eisenreduktion (Kap. 14) zu jenen Eigenschaften, die unter den Prokaryoten in Böden erst zum Einsatz kommen, wenn bestimmte ökologische Bedingungen erfüllt worden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Ahmad F, Ahmad I, Aqil F, Saghir-Khan M, Hayat S (2008) Diversity and potential of nonsymbiotic diazotrophic bacteria in promoting plant growth. In: Ahmand I, Pichtel J, Hayat S (Hrsg) Plant-bacteria interactions, Wiley-VCH, Weinheim, S 81–109

    Chapter  Google Scholar 

  • Alazard D (1985) Stem and root nodulation in Aeschynomene spp. Appl Environ Microbiol 50: 732–734

    PubMed  CAS  Google Scholar 

  • Alazard D, Duhoux E (1987) Nitrogen-fixing stem nodules on Aeschynomene afraspera. Biol Fertil Soils 4: 61–66

    Google Scholar 

  • Alexander G, Zhulin IB (2007) Chemotaxis in soil diazotrophs: Survival and adaptive response. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 73–84

    Chapter  Google Scholar 

  • Baca BE, Elmerich C (2007) Microbial production of plant hormones. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 113–144

    Chapter  Google Scholar 

  • Barrett CF, Parker MA (2005) Prevalence of Burkholderia sp. nodule symbionts on four mimosoid legumes from Barro Colorado Island, Panama. Syst Appl Microbiol 28: 57–65

    Article  PubMed  CAS  Google Scholar 

  • Barrett CF, Parker MA (2006) Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol 72: 1198–1206

    Article  PubMed  CAS  Google Scholar 

  • Becker M,Alazard D, Ottow JCG (1986) Mineral nitrogen effect on nodulation and nitrogen fixation of the stem-nodulating legume Aeschynomene afraspera. Z Pflanzenernähr Bodenk 149: 485–491

    Article  Google Scholar 

  • Becker M,Ali M, Ladha JK, Ottow JCG (1995a) Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res 40: 135–141

    Article  Google Scholar 

  • Becker M, Diekmann KH, Ladha JK, DeDatta SK, Ottow JCG (1991) Effect of NPK on growth and nitrogen fixation of Sesbania rostrata as a green manure for lowland rice (Oryza sativa L.). Plant Soil 132: 149–158

    Article  CAS  Google Scholar 

  • Becker M, Ladha JK, Ali M (1995b) Green manure technology: Potential, usage, and limitations. A case study for lowland rice. Plant Soil 174: 181–194

    Article  CAS  Google Scholar 

  • Becker M, Ladha JK, Ottow JCG (1990) Growth and N2-fixation of two stem-nodulating legumes and their effect as green manure on lowland rice. Soil Biol Biochem 22: 1109–1119

    Article  Google Scholar 

  • Becker M, Ladha JK, Ottow JCG (1994a) Nitrogen losses and lowland rice yield as affected by residue N release. Soil Sci Soc Am J 58: 1660–1665

    Article  CAS  Google Scholar 

  • Becker M, Ladha JK, Simpson IC, Ottow JCG (1994b) Parameters affection residue nitrogen mineralization in flooded soils. Soil Sci Soc Am J 58: 1666–1671

    Article  CAS  Google Scholar 

  • Becking JH (1982) Nitrogen fixation in nodulated plants other than legumes. In: Subbarao NS (Hrsg) Advances in agricultural microbiology, Butterworth, London, S. 90–110

    Google Scholar 

  • Bennett J, Ladha JK (1992) Feasibility of nodulation and nitrogen fixation in rice. In: Khush GS, Bennett J (Hrsg) Nodulation and nitrogen fixation in rice: Potential and prospect, International Rice Research Institute, Los Banos, Philippines, S. 1–14

    Google Scholar 

  • Bergey’s Manual of Systematic Bacteriology (2005) 2. Aufl. Vol 2. The proteobacteria, Part B. The Gammaproteobacteria; Part C. Alpha-, Beta-, Delta-, and Epsilonproteobacteria, Brenner DJ, Krieg NR, Staley JT, Garity GM (Hrsg) Springer, New York

    Google Scholar 

  • Bergman B, Rai AN, Rassmussen U (2007) Cyanobacterial associations. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 257–300

    Chapter  Google Scholar 

  • Berkum P van, Leibold JM, Eardly BD (2006) Proposal for combining Bradyrhizobium spp. (Aeschynomene indica) with Blastobacter denitrificans and to transfer Blastobacter denitrificans (Hirsch u. Muller 1985) to the genus Bradyrhizobium as Bradyrhizobium denitrificans (com. Nov.). Syst Appl Microbiol 29: 207–215

    Article  Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, de Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: Contributions and prospects for improvement. Plant Soil 174: 195–209

    Article  CAS  Google Scholar 

  • Casella S, Leporine C, Nuti MP (1984) Nitrous oxide production by nitrogen-fixing fast-growing rhizobia. Microb Ecol 10: 107–114

    Article  Google Scholar 

  • Ciampitti IA, Clario EA, Conti ME (2008) Nitrous oxide emissions from soil during soybean (Glycine max L. Merrill) crop phenological stages and stubbles decomposition period. Biol Fertil Soils 44: 581–588

    Article  Google Scholar 

  • Date RA (2000) Inoculated legumes in cropping systems of the tropics. Field Crops Res 65: 123–136

    Article  Google Scholar 

  • De Faria SM, Lewis GP, Sprent JL, Sutherland JM (1989) Occurrence of nodulation in the Leguminoseae. New Phytol 111: 607–619

    Article  Google Scholar 

  • Dehio G, Schell J, Koncz C (1994) Agrobacterium und Rhizobium: Bodenbakterien als Pflanzeningenieure. In: Hausmann K, Kremer BP(Hrsg) Extremophile Mikroorganismen in ausgefallenen Lebensräumen, Wiley-VCH, Weinheim, S 257–277

    Google Scholar 

  • Dénarie J, Debellé F, Promé JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65: 503–535

    Article  PubMed  Google Scholar 

  • De Souza Moreiera FM, Cruz L, De Faria SM, Marsh T, Martinez-Romero E, De Oliveira Pedrosa F, Pitard M, Young JPW (2006) Azorhizobium doebereinerae sp. nov. microsymbiont of Sesbania virgata (Caz.) Pers. Syst Appl Microbiol 29: 197–206

    Article  Google Scholar 

  • Dieckmann KH, De Datta SK, Ottow JCG (1993) Nitrogen uptake and recovery from urea and green manure in lowland rice measured by 15 N and non-isotope techniques. Plant Soil 148: 91–99

    Article  Google Scholar 

  • Dieckmann KH, Ottow JCG, De Datta SK (1996) Yield and nitrogen response of lowland rice (Oryza sativa L.) to Sesbania rostrata and Aeschynomene afraspera green manure in different marginally productive soils in the Philippines. Biol Fertil Soils 21: 103–108

    Article  Google Scholar 

  • Diem HG, Dommergues YR (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (Hrsg) The biology of Frankia and actinorhizal plants, Academic Press, San Diego, S. 316–342

    Google Scholar 

  • Dobbelaere S, Okon Y (2007) The plant growth-promoting effect and plant responses. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 145–170

    Chapter  Google Scholar 

  • Dommergues YR (1997) Contribution of actinorhizal plants to tropical soil productivity and rehabilitation. Soil Biol Biochem 29: 931–941

    Article  CAS  Google Scholar 

  • Dreyfus B, Dommergues YR (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10: 313–317

    Article  CAS  Google Scholar 

  • Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martinez-Romero E, Velázquez E et al. (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11: 762–778

    Article  PubMed  Google Scholar 

  • Engels KA, Becker M, Ottow JCG, Ladha JK (1995) Influence of phosphorus or phosphorus-potassium fertilization on biomass and dinitrogen fixation of the stem-nodulating green manure legume Sesbania rostrata in different marginally productive wetland rice soils. Biol Fertil Soils 20: 107–112

    Article  Google Scholar 

  • Evans HJ, Barber LE (1977) Biological nitrogen fixation for food and fiber production. Science 179: 332–339

    Article  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogenase fixation in rhizobia. Microbiol Rev 58: 352–386

    PubMed  CAS  Google Scholar 

  • Ghosh S, Majumdar D, Jain MC (2002) Nitrous oxide emissions from kharif and rabi legumes grown on an alluvial soil. Biol Fertil Soils 35: 473–478

    Article  CAS  Google Scholar 

  • Graham PH (2008) Ecology of the root-nodule bacteria of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses, Springer, Dordrecht, S. 23–58

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131: 872–877

    Article  PubMed  CAS  Google Scholar 

  • Gualtieri G, Bisseling T (2000) The evolution of nodulation. Plant Mol Biol 42: 181–194

    Article  PubMed  CAS  Google Scholar 

  • Hansen AP (1994) Symbiotic N2-fixation of crop legumes. Hohenheimer Trop Agric Series 2: 1–248

    Google Scholar 

  • Haselkorn R (2007) Heterocyst differentiation and nitrogen fixation in cyanobacteria. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 233–256

    Chapter  Google Scholar 

  • Herridge DF (2008) Inoculation technology for legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, S. 77–116

    Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311: 1–18

    Article  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B (2005) Molecular ecology of N2-fixing microbes associated with gramineous plants: Hidden activities of unknown bacteria. In: Werner D, Newton WE (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer, Dordrecht, S. 175–198

    Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2-fixation. New Phytol 136: 375–408

    Article  CAS  Google Scholar 

  • Jagnow G (1987) Inoculation of cereals crops and forage grasses with the nitrogen-fixing rhizosphere bacteria: Possible causes of success and failure with regard to yield response – review. Z Pflanzenernähr Bodenk 150: 361–368

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65: 197–209

    Article  Google Scholar 

  • Klingmüller W (1991) Nitrogen-fixing Enterobacter: A cornerstone in nif-gene group development. Naturwiss 78: 16–20

    Article  Google Scholar 

  • Kobayashi H, Broughton WJ (2008) Fine-tuning of symbiotic genes in rhizobia: Flavonoid signal transduction cascade. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses, Springer, Dordrecht, S. 117–152

    Google Scholar 

  • Kreutzer R, Steibl HD, Dayananda S, Dippe R, Halda l, Buck M, Klingmüller W (1991) Genetic characterization of nitrogen fixation in Enterobacter strains from the rhizosphere of cereals. In: Polsinelli M, Materassi R, Vincenzini M (Hrsg) Nitrogen fixation. Proc Fifth Intern Symp Nitrogen Fixation with Non-Legumes, Florence 1990, Kluwer, Dordrecht, S. 25–36

    Google Scholar 

  • Ladha JK, de Bruijn FJ, Malik KA (1997) Assessing opportunities for nitrogen fixation in rice – a frontier project. Plant Soil 194: 1–10

    Article  CAS  Google Scholar 

  • Ladha JK, Pareek RP, Becker M (1992) Stem-nodulating legume-Rhizobium symbiosis and its agronomic use in lowland rice. Adv Soil Sci 20: 147–192

    Google Scholar 

  • Ladha JK, Reddy PM (1995) Extension of nitrogen fixation to rice: Necessity and possibilities. GeoJournal 35: 363–372

    Article  Google Scholar 

  • Mandal B, Bhattacharya K, Mete PK (1997) Effects of Sesbania rostrata and Azolla microphylla incorporation on transformation of applied zinc and copper in lateritic rice soils with different flooding regimes. Biol Fertil Soils 24: 394–398

    Article  CAS  Google Scholar 

  • Maunoury N, Kondorosi A, Kondorosi E, Mergaert P(2008) Cell biology of nodule infection and development. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses, Springer, Dordrecht, S. 153–190

    Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2006) Isolation and identification of Gluconacetobacter azotocaptans from corn rhizosphere. Syst Appl Microbiol 29: 496–501

    Article  PubMed  CAS  Google Scholar 

  • Minchin FR, Witty JF, Sheehy JE, Müller M (1983) Amajor error in the acetylene reduction assay: Decreases in nodular nitrogenase activity under assay conditions. J Exp Bot 34: 641–649

    Article  CAS  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411: 948–950

    Article  PubMed  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic application of Azospirillum: An evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 12: 1591–1601

    Article  Google Scholar 

  • Okoronkwo N, van Hove C, Eskew DL (1989) Evaluation of nitrogen fixation by different strains of the Azolla-Anabaena symbiosis in the presence of a high level of ammonium. Biol Fertil Soils 7: 275–278

    Article  CAS  Google Scholar 

  • Paschke MW, Dawson JO (1992) The occurrence of Frankia in tropical forest soils of Costa Rica. Plant Soil 142: 63–67

    Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry, Academic Press, San Diego New York Berkeley

    Google Scholar 

  • Pedrosa FO, Elmerich C (2007) Regulation of nitrogen fixation and ammonium assimilation in associative and endophytic nitrogen fixing bacteria: In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 41–72

    Chapter  Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: Investments, expectations and actual contribution to agriculture. Plant Soil 141: 13–39

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF (1990) Nitrogen fixation by legumes in tropical and subtropical agriculture. Adv Agron 44: 155–221

    Article  CAS  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: An efficient source of nitrogen for sustainable agricultural production? Plant Soil 174: 3–28

    Article  CAS  Google Scholar 

  • Peters GA, Meeks JC (1989) The Azolla-Anabaena symbiosis: Basic biology. Annu Rev Plant Physiol Plant Mol Biol 40: 193–210

    Article  Google Scholar 

  • Prin Y, Duhoux E, Diem HG, Roederer Y, Dommergues YR (1991) Aerial nodules in Casuarina cunninghamiana. Appl Environ Microbiol 57: 871–874

    PubMed  CAS  Google Scholar 

  • Reddell P, Bowen GD (1985) Do single nodules of Casuarinaceae contain more than one Frankia strain? Plant Soil 88: 275–279

    Article  Google Scholar 

  • Reddy PM, Ladha JK (2000). Nitrogen fixation: Objectives and achievements. In: Pedro FO, Hungria M, Yates GM, Newton WE (Hrsg) Nitrogen fixation: From molecules to crop productivity. Current Plant Science Biotechnology in Agriculture, Kluwer Dordrecht, S. 641–646

    Google Scholar 

  • Reis VM, Lee S, Kennedy C (2007) Biological nitrogen fixation in sugarcane. In: Elmerich C, Newton WE (Hrsg) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations, Springer, Dordrecht, S. 213–232

    Chapter  Google Scholar 

  • Rhijn van P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59: 124–142

    Google Scholar 

  • Roesch LF, Camargo FAO, Bento FM, Triplett (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302: 91–104

    Article  CAS  Google Scholar 

  • Rodrigues EP, Rodrigues LS, Oliveira ALM, Baldani VLD, Teixewira KRS, Urquiaga S, Reis VM (2008) Azospirillum amazonense inoculation: Effects on growth, yield and N2-fixation of rice (Oryza sativa L). Plant Soil 302: 249–261

    Article  CAS  Google Scholar 

  • Roper MM, Ladha JK (1995) Biological N2-fixation by heterotrophic and phototrophic bacteria in association with straw. Plant Soil 174: 211–224

    Article  CAS  Google Scholar 

  • Rudnick P, Meletzus D, Green A, He, L, Kennedy C (1997) Regulation of nitrogen fixation by ammonium in diazotrophic species of proteobacteria. Soil Biol Biochem 29: 831–841

    Article  CAS  Google Scholar 

  • Russo RO (2005) Nitrogen fixing trees with actinorhiza in forestry and agroforestry. In: Werner D, Newton WE (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer, Dordrecht, S. 143–171

    Chapter  Google Scholar 

  • Sadowsky MJ (2005) Soil stress factors influencing symbiotic nitrogen fixation. In: Werner D, Newton WE (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer, Dordrecht, S. 89–112

    Chapter  Google Scholar 

  • Singh PK, Panigrahi BC, Satapathy KB (1981) Comparative efficiency of Azolla, blue-green algae and other organic manures in relation to N and P availability in a flooded rice soil. Plant Soil 62: 35–44

    Article  Google Scholar 

  • Smit P, Bisseling T (2008) Genetics: A way to unravel molecular mechanisms controlling the rhizobial-legume symbiosis. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses, Springer, Dordrecht, Netherlands, S. 191–210

    Google Scholar 

  • So RB, Ladha JK, Youngh JP (1994) Photosynthetic symbionts of Aeschynomene spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Intern J Syst Bacteriol 44: 392–403

    Google Scholar 

  • Sprent JJ (2005) Nodulated legume trees. In: Werner D, Newton WE (Hrsg) Nitrogen fixation in agriculture, forestry, ecology, and the environment, Springer, Dordrecht, S. 113–142

    Chapter  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24: 487–506

    Article  PubMed  CAS  Google Scholar 

  • Subbarao NS (1988) Microbiological aspects of green manure in lowland rice soils. In: International Rice Research Institute (Hrsg) Green manure in rice farming, IRRI, Los Banos, Philippines, S. 131–149

    Google Scholar 

  • Tejera N, Lluch C, Martinez-Toledo MV, González-López J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270: 223–232

    Article  CAS  Google Scholar 

  • Triplett EW, Rolfe BG, Cocking EC, Kennedy I, Vanderleyden J (2007) A nitrogen story. Microbe 2: 372–373

    Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2-fixation by annual legumes. Field Crops Res 65: 211–228

    Article  Google Scholar 

  • Vance CP (2008) Carbon and nitrogen metabolism in legume nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (Hrsg) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, S. 293–320

    Google Scholar 

  • Ventura W, Watanabe I (1993) Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol Fertil Soils 15: 241–248

    Article  CAS  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. Plant Soil 274: 51–78

    Article  CAS  Google Scholar 

  • Watanabe I (1982) Azolla-Anabaena symbiosis – Its physiology and use in tropical agriculture. In: Dommergues YR, Diems HG (Hrsg) Microbiology of tropical soils and plant productivity, Martin Nijhoff, Den Haag, S. 169–185

    Google Scholar 

  • Watanabe I, Lin C, Santiago-Ventura T (1989a) Responses to high temperature of the Azolla-Anabaena association, determined in both the fern and the cyanobacterium. New Phytol 111: 625–630

    Article  Google Scholar 

  • Watanabe I, Liu CC (1992) Improving nitrogen-fixing systems and integrating them into sustainable rice farming. Plant Soil 141: 57–67

    Article  CAS  Google Scholar 

  • Watanabe I, Ventura W, Mascarina G, Eskew DL (1989b) Fate of Azolla spp. and urea nitrogen applied to wetland rice (Oryza sativa L.) Biol Fertil Soils 8: 102–110

    Article  Google Scholar 

  • Webster G, Gough C, Vasse J, Batchelor CA, O’Callaghan KJ, Kothari SL, Davey MR et al. (1997) Interactions of rhizobia with rice and wheat. Plant Soil 194: 115–122

    Article  CAS  Google Scholar 

  • Werner D (1987) Pflanzliche und mikrobielle Symbiosen, Thieme, Stuttgart New York

    Google Scholar 

  • Young JM, Kuykendall LD, Marinez-Romero E, Kerr A, Sawada A (2001) A revision of Rhizobium Frank 1889 with an amended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Intern J Syst Evol Microbiol 51: 89–103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ottow, J. (2011). Die mikrobiologische N2-Fixierung (Diazotrophie) in Böden und Rhizosphäre. In: Mikrobiologie von Böden. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00824-5_13

Download citation

Publish with us

Policies and ethics