Skip to main content

Thermo-physical properties for severe accident analysis

  • Chapter
  • First Online:
Multiphase Flow Dynamics 4
  • 1572 Accesses

Several modern aspects of the severe accident analysis can not be understood if the engineer does not have accurate information of the material properties for the participating structural materials in solid, in liquid and in some cases in gaseous states. Chapter 17 contains valuable sets of thermo-physical and transport properties for severe accident analysis for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth and lead-bismuth alloys. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chu CC, Sieniki JJ and Beker L Jr (October, 1996) Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Theophanous TG et al., eds., In-vessel Coolability and Retention of a Core Melt, DOE/ID-10460 vol 1, U.S. Department of Energy Report

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Brassfield HC et al. (April, 1968) Recommended property and reactor kinetics data for use in evaluating a light-water-coolant reactor loss-of-coolant incident involving Zircaloy-4 or 304-SS-clad UO2, GEMP-482

    Google Scholar 

  • Breitung W and Reil KO (August, 1985) In-pile vapor pressure measurements on UO2 and (U, Pu)O2, Kernforschungszentrum Karlsruhe, KfK 3939

    Google Scholar 

  • Chawla TC et al. (1981) NED vol 67, pp 57–74

    Google Scholar 

  • Gmelin (1986) Handbook of Inorganic Chemistry, 8th ed. Uranium, Supplement Volume C5, Chap. 4.8.6: Thermal conductivity, Springer-Verlag, Berlin

    Google Scholar 

  • Fink JK, Chasanov MG and Leibowitz L (April, 1981a) Thermodynamic properties of uranium dioxide, ANL-CEN-RSD-80-3

    Google Scholar 

  • Fink JK, Chasanov MG and Leibowitz L (1981b) Thermo-physical properties of uranium dioxide. J. Nucl. Mater., vol 102, pp 17–25

    Google Scholar 

  • Fink JK, Chasanov MG and Leibowitz L (1982) Properties for safety analysis, ANL-CEN-RSD-82-2

    Google Scholar 

  • Fink JK and Leibowitz L (1985) An analysis of measurements of the thermal conductivity of liquid urania. High Temperatures-High Pressures, vol 17, pp 17–26

    Google Scholar 

  • Fischer EA (1989) A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng., vol 101, pp 97–116

    Google Scholar 

  • Fischer EA (May, 1992) Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe

    Google Scholar 

  • Hagrman DL, Laats ET and Olsen CS (1990) In Hohorst JK ed. SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Hendricks RC, Baron AK and Peller CP (February, 1975) GASP – A computer code for calculating the thermodynamic and transport properties for ten fluids: Parahydrogen, helium, neon, methane, nitrogen, carbon monoxide, oxygen, fluorine, argon, and carbon dioxide, NASA technical note NASA TN D-7806, Washington, DC

    Google Scholar 

  • Hohorst JK ed. (1990) SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Karim S (1976) PhD Thesis, MEI Moscow

    Google Scholar 

  • Karow HU (February, 1977) Thermodynamic state, specific heat and enthalpy function of saturated UO2 vapor between 3000 K and 5000 K, Kernforschungszentrum Karlsruhe, KfK 2390

    Google Scholar 

  • Kim et al. (May 12–12, 1977) Measurements of thermal diffusivity of molten UO2. Proceedings of the 7th Symposium on Thermophysical Properties at the National Bureau of Standards, Gaithersberg, MD, CONF 770537-3, pp 338–343

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Kusnezov VD and Katkovskii EA (1975) Teplovoj I gidravlicheskij raschet na EVM reaktorov s vodoj pod davleniem, MEI Moscow

    Google Scholar 

  • Leibowitz L et al. (April, 1976) Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1

    Google Scholar 

  • Lyon WF and Baily WE (1976) The solid-liquid diagram of the UO2-PO2 system. J. Nucl. Mater, vol 22, p 332

    Article  Google Scholar 

  • Malang S (1975) Simulation of nuclear fuel rods by using process-computer controlled power for indirect electrically heated rods, Oak Ridge National Laboratory, ORNL-TM-4712 (GEMP-482)

    Google Scholar 

  • Redlich O and Kwong JNS (1949) On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev. vol 44, pp 233–244

    Article  Google Scholar 

  • Reymann GA (1990) Specific heat capacity and enthalpy. In: Hohorst JK ed. SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Riedel L (1954) Eine neue universelle Dampfdruckformel. Chem.-Ing. Tech., vol 26, pp 83–89

    Article  Google Scholar 

  • Cordfunke EHP and Konings RJM (1990) Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam

    Google Scholar 

  • Chu CC, Sieniki JJ and Beker L Jr (October, 1996) Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous TG et al., eds., In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460, vol 1, U.S. Department of Energy Report

    Google Scholar 

  • Gilchrist KE (1976) Thermal property measurements on Zirkaloy-2 and associated oxide layers. J. Nucl. Mater., vol 62, pp 257–264

    Article  Google Scholar 

  • Hagrman DL, Laats ET and Olsen CS (1990) In: Hohorst JK ed., SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Hagrman DL (1990) In: Hohorst JK ed., SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Hammer RR (September, 1967) Zircaloy-4, uranium dioxide and materials formed by their interaction, A literature review with extrapolation of physical properties to high temperatures, IN-1093

    Google Scholar 

  • Hohorst JK ed. (1990) SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Nonograph No. 9, American Chemical Sociaty

    Google Scholar 

  • Chawla TC et al. (1981) NED vol 67, pp 57–74

    Google Scholar 

  • Chu CC, Sieniki JJ and Beker L Jr (October, 1996) Uncertainty analysis for thermophysical properties used in in-vessel retention analysis. In: Teofanous TG et al., eds., In-Vessel Coolability and Retention of a Core Melt, DOE/ID-10460 vol 1, U.S. Department of Energy Report

    Google Scholar 

  • Fischer EA (1989) A new evaluation of the urania equation of state based on recent vapor pressure. Nucl. Sci. Eng., vol 101, pp 97–116

    Google Scholar 

  • Fischer EA (May, 1992) Fuel evaluation of state data for use in fast reactor accident analysis codes, KfK 4889, Kernforschungszentrum Karlsruhe

    Google Scholar 

  • Fortov VE, Dremin AN and Leont’ev AA (1975) Evaluation of the parameters of the critical point. High Temp., vol 13, pp 984–992

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Kurz W and Lux B (1969) The sound velocity of iron and iron alloys in solid and fluid states (in German). High Temp. – High Pressure, vol 1, pp 387–399

    Google Scholar 

  • Leibowitz L et al. (April, 1976) Properties for LMFBR safety analysis, ANL-CEN-RSD-76-1

    Google Scholar 

  • Ostensen RW, Murphy WF, Wrona BJ, Dietrich LW and Florek JC (1977) Intrusion of molten steel into cracks in solid fuel in transient-undercooling accident in liquid-metal fast breeder reactor. Nucl. Technol, vol 36, pp 200–214

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York, pp 3–285

    Google Scholar 

  • Redlich O and Kwong JNS (1949) On the thermodynamics of solutions. V, An equation of state. Fugacities of gaseous solutions. Chem. Rev., vol 44, pp 233–244

    Article  Google Scholar 

  • Richter F (1983) Die wichtigsten physikalischen Eigenschaften von 52 Eisenwerkstoffen Stahleisen-Sonderberischte Heft 8, Verlag Stahleisen M.B.H.-Düsseldorf

    Google Scholar 

  • Teofanous TG et al. (October, 1996) In-vessel coolability and retention of a core melt, DOE/ID-10460 vol 1, U.S. Department of Energy Report

    Google Scholar 

  • VDI-Wärmeatlas (1991) Berechnungsblätter für den Wärmeübergang, 6. Aufl., VDI-Verlag, Düsseldorf

    Google Scholar 

  • Bonnell DW (1972) Property measurements at high temp., levitation calorimetry studies of liquid metals. Ph.D. Thesis Rice University, Houston, TX.

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Nonograph No. 9, American Chemical Sociaty

    Google Scholar 

  • Cordfunke EHP and Konings RJM (1990) Thermochemical Data for Reactor Materials and Fussion Products, North-Holland, Amsterdam

    Google Scholar 

  • Fink JK and Leibowitz L (1995) Thermal conductivity of zirconium. J. Nucl. Mater., vol 226, pp 44–50

    Article  Google Scholar 

  • Hohorst JK ed. (1990) SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A library of material properties for light-water-reactor accident analysis, NUREG/CR-5273, EGG-2555

    Google Scholar 

  • Kelly JE, Kao SP and Kazimi MS (April, 1981) THERMIT-2: A two fluid model for light water reactor subchannel transient analysis, MIT Energy Laboratory Electric Utility Program, Report No. MIT-EL.81-014

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Krishnan S, Weber JKR, Anderson CD and Nordine PC (1993) Spectral emissivity and optical properties at l=632.8 nm for liquid uranium and zirconium at high temperature. J. Nucl. Mater., vol 203, pp 112–121

    Article  Google Scholar 

  • Rassohin NT, Gradusov GH and Gorbatych VP (1971) Korosija splava zirkonija – 1% niobija v uslovijah teploperedaci, Trudy MEI, Vyp. 83

    Google Scholar 

  • TAPP (1994) A Database of Thermo-Chemical and Physical Properties. ES Microware, Hamilton, Ohio

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Nonograph No. 9, American Chemical Sociaty

    Google Scholar 

  • Kammer C (1995) Aluminium-Taschenbuch, Aluminium-Verlag, Düsseldorf, 15. Auflage

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Touloukian YS and DeWitt DP (1972) Thermo-Physical Properties of Matter. Plenum Press, New York

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York.

    Google Scholar 

  • Barin I and Knacke O (1973) Thermo-Chemical Properties of Inorganic Substances. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Bates JL, McNeilly CE and Rasmussen JJ (1971) Properties of Molten Ceramics. Batelle Memorial Institute, Richland, Washington BNWL-SA-3529

    Google Scholar 

  • Biomquist RA, Fink JK and Leibowitz L (1978) Viscosity of molten alumina. Ceram. Bull., vol 5, p 522

    Google Scholar 

  • Ceramic Nist (2007) http://www.ceramics.nist.gov/srd/summary/scdaos.htm

  • Elyutin VP, Mitin BC and Nagibin YuA (1972) Properties of liquid aluminum oxide. Fiz. Aerodispersnykh Syst., vol 7, pp 104–109

    Google Scholar 

  • Kuhn D, Moschke M and Werle H (Okt., 1983) Freezing of aluminum oxide and iron flowing upward in circular quartz glass tubes, KfK 3592

    Google Scholar 

  • McCahan S and Shepherd JE (January, 1993) A thermodynamic model for aluminum-water interaction. Proceedings of the CSNI Specialists Meeting on Fuel-Coolant Interaction, Santa Barbara, California, NUREC/CP-0127

    Google Scholar 

  • Peppler W, Menzenhauer P and Will H (July, 1983) Simulated fuel melt movement and relocation in two seven-pin-bundle geometries, KfK 3591

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York, pp 3–285

    Google Scholar 

  • Samsonov GV ed. (1982) The Oxide Handbook, 2nd ed. IFI/PLENUM, New York

    Google Scholar 

  • Shpil'rain EE, Yakimovich KA and Tsitsarkin AF (1973) Experimental study of the density of liquid alumina up to 2750°C. High Temp. – High Pressures, vol 5, pp 191–198

    Google Scholar 

  • Touloukian YS ed. (February, 1966) Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana

    Google Scholar 

  • Touloukian YS and Buyco EH (1970) Thermo-Physical Properties of Matter, vol 5, Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, IFI/PLENUM, New York

    Google Scholar 

  • Touloukian YS, Powell RW, Ho CY and Klemens PG (1970) Thermo-Physical Properties of Matter, vol 2, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, IFI/PLENUM, New York

    Google Scholar 

  • Turnay K (Mai 1985) Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe

    Google Scholar 

  • Urbain G (1982) Viscosite de 1'alumine liquide. Rev. Int. Hautes Temper. Refract, vol 19, pp 55–57

    Google Scholar 

  • Bityukov VK, Petrov VA and Stepanov SV (1981) Teplofiz. Vys. Temp., vol 19, no 3, p 661

    Google Scholar 

  • Bityukov VK, Petrov VA and Stepanov SV (1984) Determination of the coefficient of thermal conductivity of silica glass by the contactless flat-plate method at 950-1500 K. High Temp., vol 21, no 6, p 840 (Teplofiz. Vys. Temp. (1983) vol 21, no 6, p 1099)

    Google Scholar 

  • Krzhizhanovskii RE and Shtern ZYu (1973) Thermo-physical properties of nonmetallic materials, Energija, Leningrad

    Google Scholar 

  • Men' AA and Chechel'nitskii AZ (1973) Teplofis. Vys. Temp., vol 11, no 6, p 1309

    Google Scholar 

  • Memsnet (2007) www.memsnet.org/material/silicondioxidesio2film/

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York

    Google Scholar 

  • Samsonov GV ed. (1982) The Oxide Handbook, 2nd ed. IFI/PLENUM, New York

    Google Scholar 

  • Touloukian YS ed. (February, 1966) Recommended values of the thermo-physical properties of eight alloys, major constituents and their oxides thermo-physical properties research center, Purdue University, Lafayette, Indiana

    Google Scholar 

  • Touloukian YS and Buyco EH (1970) Thermo-Physical Properties of Matter, vol 5, Specific Heat/Nonmetallic Solids. DATA TABLE NO. 62-A, IFI/PLENUM, New York

    Google Scholar 

  • Touloukian YS, Powell RW, Ho CY and Klemens PG (1970) Thermo-Physical Properties of Matter, vol 2, Thermal Conductivity/Nonmetallic Solids. DATA TABLE no 32, IFI/PLENUM, New York

    Google Scholar 

  • Touloukian YS and Ho CY, eds. (1976) Thermo-physical properties of selected aerospace materials, Part I, Thermo-physical and Electronic Properties Information Center, CINDAS – Purdue University

    Google Scholar 

  • Turnay K (Mai, 1985) Thermophysicalische Eigenschaften des Aluminiumoxides und Quarzglases, Research Center Karlsruhe

    Google Scholar 

  • Barin I and Knacke O (1973) Thermochemical Properties of Inorganic Substances. Springer-Verlag, New York

    Google Scholar 

  • Lide DR and Frederikse HPR eds. (1997) CRC Handbook of Chemistry and Physics, 78th ed. CRC Press, New York

    Google Scholar 

  • Massalski TB ed. (1992) Binary Alloy Phase Diagrams ASM International, 2nd ed. ASM International, Materials Park, Ohio

    Google Scholar 

  • MATPRO (1990) SCDAP/RELAP5/MOD2 Code Manual, vol 4: MATPRO – A Library of Materials Properties for Light- Water-Reactor Accident Analysis, NUREG/CR-5273

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York, pp 3–285

    Google Scholar 

  • Powers DA, Brockmann JE and Shiver AW (July, 1986) VANESA: A mechanistic model of radionuclide release and aerosol generation during core debris interactions with concrete, NUREG/CR-4308

    Google Scholar 

  • Reimann M and Stiefel S (June, 1989) The WECHSL-Mod2 Code: A computer program for the interaction of a core melt with concrete including the long term behavior – Model Description and User's Manual, KfK 4477

    Google Scholar 

  • Touloukian YS, Powell RW, Ho CY and Klemens PG (1970) Thermophysical Properties of Matter, vol 2, Thermal Conductivity – Nonmetallic Solids. IFI/PLENUM, New York, Washington

    Google Scholar 

  • Touloukian YS and DeWitt DP (1972) Thermophysical Properties of Matter. Plenum Press, New York

    Google Scholar 

  • Touloukian YS, Kirby RK, Taylor RE and Lee TYR (1977) Thermophysical Properties of Matter – vol 13, Thermal Expansion – Nonmetallic Solids. IFI/PLENUM, New York, Washington

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Nonograph No. 9, American Chemical Sociaty

    Google Scholar 

  • Cordfunke EHP and Konings RJM (1990) Thermochemical Data for Reactor Materials and Fussion Products. North-Holland, Amsterdam

    Google Scholar 

  • Elyutin VP, Kostikov VI and Pen’kov IA (September, 1970) Effect of carbon on the surface tension and density of liquid vanadium, niobium, and molybdenum. Poroshovaya Metallurgya, vol 93, no 9, pp 46–51

    Google Scholar 

  • Kolev NI (2007) Multiphase Flow Dynamics, vol 1 Fundamentals. Springer, Berlin, New York, Tokyo

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New York, pp 3–285

    Google Scholar 

  • Touloukian YS, Powell RW, Ho CY, and Klemens PG (1970) Thermophysical Properties of Matter – vol 1, Thermal Conductivity – Metallic Elements and Alloys. IFI/PLENUM, New York, Washington

    Google Scholar 

  • Touloukian YS and DeWitt DP (1972) Thermo-Physical Properties of Matter. Plenum Press, New York

    Google Scholar 

  • Alfa Aesar (1999) Bestellkatalog Forschungschemikalien. Metalle and Materialien 1999–2000

    Google Scholar 

  • Cordfunke EHP and Konings RJM (1990) Thermochemical Data for Reactor Materials and Fussion Products North-Holland, Amsterdam

    Google Scholar 

  • Cox JD, Wagman DD and Medvedev VA (1989) CODATA Key Values for Thermodynamics. Hemisphere Publ. Corp., New York

    Google Scholar 

  • Glushko VP, Gurvich LV, Bergman GA, Veyts IV, Medvedev VA, Kachkuruzov GA and Yungman VS (1981) Termodinamicheskie Svoistva Individual'nykh. Tom III, Nauka, Moskva

    Google Scholar 

  • Kelly KK (1941) J. Am. Chem. Soc., vol 63, p 1137

    Article  Google Scholar 

  • Kerr EC, Hersh N and Johnston HL (1950) J. Am. Chem. Soc., vol 72, p 4738

    Article  Google Scholar 

  • Kracek FC, Morey GW and Merwin HE (1938) Am. J. Sci., vol 35, p 143

    Google Scholar 

  • Kruh R and Stern KH (1956) The effect of solutes on the properties and structure of liquid boric oxide. J. Am. Chem. Soc., vol 78, pp 278–281

    Article  Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New-York, pp 3–285

    Google Scholar 

  • Schmidt NE (1966) Zh. Neorg. Khim., vol 11, p 441 (Russ. J. Inorg. Chem., vol 11, p 241)

    Google Scholar 

  • Touloukian YS, Powell RW, Ho CY and Klemens PG (1970) Thermophysical Properties of Matter, vol 2, Thermal Conductivity – Nonmetallic Solids. IFI/PLENUM, New York, Washington

    Google Scholar 

  • Bottomley PD and Coquerelle (August, 1989) Metallurgical examination of bore samples from the three mile island unit 2 reactor core. Nucl. Technol., vol 87, pp 120–136

    Google Scholar 

  • Chong JS, Chrisiansen EB and Baer AD (1971) Rheology of Concentrated Suspensions. J. Appl. Polym., vol 15, p 2007–2021

    Article  Google Scholar 

  • Hayward PJ and George IM (1966) Dissolution of UO2 in Zirkaloy-4 Part-4: Phase evolution during dissolution and cooling of 2000 to 2500°C specimen (ZrO0.54-UO2), vol 232, pp 13–22

    Google Scholar 

  • Hodge SA and Ott LJ (June 1–5, 1997) Interpretation of the XR2-1 experiment and characteristics of the BWR lower plenum debris bed. Proceedings of the Int. Top. Meeting on Advanced Reactor Safety, vol 1, Orlando, Florida

    Google Scholar 

  • Juenke EF and Whitte JF (1969) Zr-UO2, ReportGEMP-731

    Google Scholar 

  • Moshev VV and Ivanov VA (1990) Rheological Behavior of Concentrated Non-Newtonian Suspensions. Nauka, Moskva

    Google Scholar 

  • Politis C (October, 1975) Untersuchungen im Dreistoffsystem Uran-Zirkon-Sauerstoff, ZrO0.51-UO2, Kernforschungszentrum Karlsruhe, KfK Report 2167

    Google Scholar 

  • Ramacciotti M, Journeau C, Sudreau F and Cognet G (October 3–8, 1999) Viscosity models for corium melts. 9th International Top Meeting on Nuclear Thermal Hydraulics (NURETH-9) San Francisco

    Google Scholar 

  • Romberger KA, Baes CF Jr and Stone HH (1967) Phase equilibrium studies in the UO2-ZrO2 system. J. Inorg. Nucl. Chem., vol 29, pp 1619–1630

    Article  Google Scholar 

  • Skokan A (September 9–13, 1984) High temperature phase relations in the U-Zr-O system, ZrO0.43-UO2. 5th International Meeting on Thermal Nuclear Reactor Safety, Karlsruhe, pp 1035–1042

    Google Scholar 

  • Spindler B and Vateau JM (2006a) The simulation of melt spreading with THEMA code Part: 1 Model, assessment strategy and assessment against analytical and numerical solutions. Nucl. Eng. Design, vol 236, pp 415–424

    Google Scholar 

  • Spindler B and Vateau JM (2006b) The simulation of melt spreading with THEMA code Part: 2 Assessment against spreading experiments. Nucl. Eng. Design, vol 236, pp 425–441

    Google Scholar 

  • Tim KT and Olander DR (1988) Dissolution of uranium dioxide by molten zircaloy. J. Nucl. Mater., vol 154, pp. 85–101

    Article  Google Scholar 

  • Borishanskij VM, Kutateladze SS, Novikov II and Fedynskij OS (1976) Jidkometaliceskie teplonositeli (Liquid metal coolants), Atomisdat

    Google Scholar 

  • Brandhurst DH and Buchanan AS (1961) Surface properties of liquid sodium and sodium-potassium alloy in contact with metal oxide surfaces. Aust. J. Chem.. vol 14, no 3, pp 397–408

    Google Scholar 

  • Bystrov PI, Kagan DN, Krechetova GA and Shpilrain EE (1988) Zhidkometallicheskie teplonositeli dlya teplovyh trub i energeticheskih ustanovok (Liquid Metal Heat-Carriers for Heat Pipes and Power Facilities). Nauka Press, Moscow

    Google Scholar 

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9

    Google Scholar 

  • Cordfunke EHP and Konings RJM eds. (1990) Thermochemical Data for Reactor Materials and Fusion Products. Nord Holland, Amsterdam

    Google Scholar 

  • Dwyer OE (1976) Boiling Liquid Metal Heat Transfer. American Nuclear Society, Hinsdale, IL

    Google Scholar 

  • Ewing CT, Stone JP, Spann JR, Steinkuller EW, Williams DD and Miller RR (September, 1965) High-Temperature Properties of Potassium, NRL-6233. Naval Research Laboratory, Washington, DC

    Google Scholar 

  • Ewing CT, Stone JP, Spann JR and Miller RR (February, 1967) Molecular association in Sodium, Potassium and Cesium vapors at high temperature. J. Phys. Chem., vol 71, no 3, pp 473–477

    Article  Google Scholar 

  • Fink JK, Chasanov MG and Leibowitz L (1982) Properties for Safety Analysis, ANL-CEN-RSD-82-2

    Google Scholar 

  • Golden GH and Tokar JV (August, 1967) Thermophysical Properties of Sodium. ANL-7323, Argonne National Laboratory, Argonne, IL

    Google Scholar 

  • Gurvich LV, Yorish VS, Khandamirova NE and Yungman VS (1985) Ideal gaseous state. In: Ohse RW ed., Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publishing, Oxford

    Google Scholar 

  • Hame W (Dez., 1986) Aufbereitung der Stoffunktionen für Natrium; Einsatz in COMIX-Referenzversion KfK auf M7890 und Vektorrechner, PTF report delivered to KfK

    Google Scholar 

  • Ivanovskij MN, Sorokin VP and Subbotin VI (1976) Isparenie I kondensazija metalov. Atomizdat, Moskva

    Google Scholar 

  • Kiriyanenko AA, Makarova OP, Romanov VD and Solov'evAN (1965) Experimental investigation of the surface tension of liquid sodium. J. Appl. Mech. Tech. Phys., no 4, pp 121–122

    Google Scholar 

  • Makansi M, Muendel C and Selke W (1955) J. Phys. Chem., vol 59, no 1, p 40

    Article  Google Scholar 

  • Makansi M, Selke WA and Bonilla CF (October, 1960) Thermodynamic properties of sodium. J. Chem. Eng. Data, vol 5, no 4, pp 441–452

    Article  Google Scholar 

  • Miller D, Cohen AB and Dickerman CE (September, 1967) Estimation of vapor and liquid density and heat of vaporization of alkali metal to the critical point. International Conference of Safety of Fast Breeder Reactors, Aix-en Provence, France

    Google Scholar 

  • Mozgovoi AG, Roshchupkin VV, Pokrasin MA, Fokin LR and Handomirova NE (1988) Lithium, sodium, potassium, rubidium, cesium. Saturation Vapor Pressure at High Temperature. GSSSD 112-87, Standards Press, Moscow

    Google Scholar 

  • Novikov II, Roshchupkin VV, Trelin YuS, Tsiganova TA and Mozgovoi AG (1981) Review series an thermophysical properties of substances, no 6 (32), Institute of Hi, Temperatures Acad. Sci. USSR, Moscow, p 65

    Google Scholar 

  • Ohse RW ed. (1985) Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publishing, Oxford

    Google Scholar 

  • Padilla A Jr (February, 1978) High-Temperature Thermodynamic Properties of Sodium, HEDL-TME 77-27. Hanford Engineering Development Laboratory, Richland, WA

    Google Scholar 

  • Perry RH and Green D (1985) Perry’s Chemical Engineer’s Handbook, 6th ed. McGraw-Hill, New York, pp 3–285

    Google Scholar 

  • Petiot F and Seiler J-M (1982) Physical properties of sodium. A contribution to the estimation of the critical coordinates. 10th Liquid Metal Boiling Working Group, Katlsruhe, October 1982

    Google Scholar 

  • Shpilrain EE, Yakimovich KA, Fomin VA, Skovorod'ko SN and Mozgovoi AG. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publications, Oxford, p. 753

    Google Scholar 

  • Stone JP, Ewing CT, Spann JR, Steinkuller EW, Williams DD and Miller RR (September, 1965) High-Temperature Properties of Sodium. NRL-6241, Naval Research Laboratory, Washington, DC

    Google Scholar 

  • Stone JP, Ewing CT, Spann JR, Steinkuller EW, Williams DD and Miller RR (1966) High-temperature properties of sodium. J. Chem. Eng. Data, vol 11, p 309

    Article  Google Scholar 

  • Thormeier K (1970) Solubility of noble gases in liquid sodium. Nucl. Eng. Design, vol 14, p 69

    Article  Google Scholar 

  • Trelin JuS, Vasiljev II and Rostchupkin BB (1960) Atomaja Energia, vol 9, no 5, p 410 (in Russian)

    Google Scholar 

  • Vargaftic NB, Vonogradov YK and Yargin VS (1996) Handbook of Physical Properties of Liquids and Gases, 3rd Augmented and revised edition. Begel House, New York

    Google Scholar 

  • Vargaftic NB and Voljak LD (1985) Thermodynamic properties of alkali metal vapors at low pressures. In: Ohse RW ed., Handbook of Thermodynamic and Transport Properties of Alkali Metals. Blackwell Scientific Publishing, Oxford

    Google Scholar 

  • Veleckis E, Dhar SK,Cafasso FR and Feder HM (1971) Solubility of helium and argon in liquid sodium. J. Phys. Chem., vol 75, no 18, pp 2832–2838

    Article  Google Scholar 

  • Wikipedia (2007) http://en.wikipedia.org/wiki/Sodium

  • Chase MW Jr (1998) NIST-JANAF Thermochemical Tables, 4th ed., part II, Cr-Zr. J. Phys. Chem. reference data, Monograph No. 9

    Google Scholar 

  • Lead-Bismuth Handbook (2007) Handbook on Lead-Bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-Hydraulics and Technology. Nuclear Energy Agency, NEA No. 6195, ISBN 978-92-64-99002-9

    Google Scholar 

  • Bober M and Singer J (1987) Vapor pressure determination of liquid UO2 using a boiling point technique, Nucl. Sci. Eng. vol 97 pp 344–352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay I. Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2009). Thermo-physical properties for severe accident analysis. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92918-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92918-5_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92917-8

  • Online ISBN: 978-3-540-92918-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics