Advertisement

Multiphase Flow Dynamics 4

Nuclear Thermal Hydraulics

  • Nikolay Ivanov Kolev

Table of contents

  1. Front Matter
    Pages i-xxviii
  2. Nikolay I. Kolev
    Pages 1-13
  3. Nikolay I. Kolev
    Pages 15-31
  4. Nikolay I. Kolev
    Pages 33-75
  5. Nikolay I. Kolev
    Pages 107-187
  6. Nikolay I. Kolev
    Pages 189-206
  7. Nikolay I. Kolev
    Pages 207-292
  8. Nikolay I. Kolev
    Pages 293-306
  9. Nikolay I. Kolev
    Pages 307-376
  10. Nikolay I. Kolev
    Pages 377-403
  11. Nikolay I. Kolev
    Pages 405-421
  12. Nikolay I. Kolev
    Pages 423-428
  13. Nikolay I. Kolev
    Pages 429-433
  14. Nikolay I. Kolev
    Pages 435-452
  15. Nikolay I. Kolev
    Pages 453-496
  16. Back Matter
    Pages 1-7

About this book

Introduction

Volume 4 of the successful book package "Multiphase Flow" is devoted to nuclear thermal hydraulics which is a substantial part of nuclear reactor safety. It provides knowledge and mathematical tools for adequate description of the process of transferring the fission heat released in materials due to nuclear reactions into its environment. It step by step introduces into the heat release inside the fuel, temperature fields in the fuels, the "simple" boiling flow in a pipe described using ideas of different complexity like equilibrium, non equilibrium, homogeneity, non homogeneity. Then the "simple" three-fluid boiling flow in a pipe is described by gradually involving the mechanisms like entrainment and deposition, dynamic fragmentation, collisions, coalescence, turbulence. All heat transfer mechanisms are introduced gradually discussing their uncertainty. Different techniques are introduced like boundary layer treatments or integral methods. Comparisons with experimental data at each step demonstrate the success of the different ideas and models. After an introduction into the design of the reactor pressure vessels for pressurized and boiling water reactors the accuracy of the modern methods is demonstrated using large number of experimental data sets for steady and transient flows in heated bundles. Starting with single pipe boiling going through boiling in a rod bundles the analysis of complete vessel including the reactor is finally demonstrated. Then powerful method for non-linear stability analysis of flow boiling and condensation is introduced. Models are presented and their accuracies are investigated for describing critical multiphase flow at different level of complexity. Basics of designing of steam generators, moisture separators and emergency condensers are presented. Methods for analyzing a complex pipe network flows with components like pumps, valves etc. are also presented. Methods for analysis of important aspects of the severe accidents like melt-water interactions, external cooling and cooling of layers of molten nuclear reactor material are presented. Valuable sets of thermo-physical and transport properties for severe accident analysis are presented for the following materials: uranium dioxide, zirconium dioxide, stainless steel, zirconium, aluminum, aluminum oxide, silicon dioxide, iron oxide, molybdenum, boron oxide, reactor corium, sodium, lead, bismuth, and lead-bismuth eutectic alloy. The emphasis is on the complete and consistent thermo dynamical sets of analytical approximations appropriate for computational analysis. Therefore the book presents a complete coverage of the modern Nuclear Thermal Hydrodynamics.

Keywords

Dynamics Multiphase Dynamics Multiphase Fflow Nuclear Engineering Nuclear Thermal-Hydraulics Reactor Engineering knowledge multiphase flow turbulence uncertainty

Authors and affiliations

  • Nikolay Ivanov Kolev
    • 1
  1. 1.Abt. NDSIFramatome ANP GmbHErlangenGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-540-92918-5
  • Copyright Information Springer-Verlag Berlin Heidelberg 2009
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Engineering
  • Print ISBN 978-3-540-92917-8
  • Online ISBN 978-3-540-92918-5
  • Buy this book on publisher's site