Skip to main content

Core degradation

  • Chapter
  • First Online:
Multiphase Flow Dynamics 4
  • 1487 Accesses

For insufficient cooling of nuclear reactor core the following processes characterizing the core degradation are identified after years of research, see Potter et al. (1985).

800–900°C: The cylindrical cladding starts to become plastic. The pressure increase inside the cladding leads to ballooning and following failure, Rose et al. (1979), Chapman et al. (1984), Hindle and Mann (1982), Kerb et al. (1982), Rosinger (1984), Arai et al. (1987);

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers DC et al. (1989) Three mile island Unit 2 Fission product inventory estimate, Nuclear Technology, vol 87 pp 205–213

    Google Scholar 

  • Akers DW, McCardell RK, Russell ML and Worku G (1990) TMI-2 core materials and fission product inventory, Nuclear Engineering and Design vol 118 p 451

    Article  Google Scholar 

  • Arai S et al. (1987) Failure Correlation for Zircaloy-2 fuel cladding under high temperature transient conditions, Journal of Nuclear Science and Technology, vol 24 no 2 pp 214–219

    Article  Google Scholar 

  • Chapman RH, Crowley JL and Longest AW(1984) Effect of bundle size an cladding de-formation in LOCA simulation results, Zirconium in the Nuclear Industry: Sixth Int. Symp., ASTM Spec. Techn. Publ., no 824 p 693

    Google Scholar 

  • Fauske & Associates Inc., (1994) MAAP4-Modular Accident Analysis Program for LWR power plants, vol. 2, part 1: Code Structure and Theory, prepared for Electric Power Research Institute

    Google Scholar 

  • Furuta T and Kawasaki S (1980) Acceleration of zircaloy steam reaction by deformation under high temperature transients, Journal of Nuclear Science and Technology, vol 17 no 3 pp 243–245

    Article  Google Scholar 

  • Hayward PJ and George IM (1994) Dissolution of UO2, in molten zircaloy-4. Part l: Solubility from 2000 to 2200°C, Journal of Nuclear Materials, vol 208 pp 35–42

    Article  Google Scholar 

  • Hayward RL, George LM (1996) Dissolution of UO2, in molten zircaloy-4, Part 2: Phase evolution during dissolution and cooling from 2000 to 2500°C Specimens, Journal of Nuclear Materials, vol 229 p 1-13

    Article  Google Scholar 

  • Hindle ED and Mann CA (1982) An experimental study of the deformation of zircaloy PWR fuel rod cladding under mainly convective cooling, Zirconium in the Nuclear Indus-try: Fifth Int. Symp., ASTM Spec. Techn. Publ., no 754 p 282

    Google Scholar 

  • Hofman GL,Hayes SL and Petri MC (1996) Temperature gradient driven constituent redistribution, in U-Zr A1loys, Journal of Nuclear Materials, vol 227 pp 277–286

    Article  Google Scholar 

  • Horst JK ed. (1990) SCDAP/RELAP/MOD2 Code manual, vol1, 2, 3, 4, NUREG/CR-5273, EGG-2555, http://www.inl.gov/relap5/scdap/scdap.htm

  • Juravkov AM and Malyshev EK, Kinetika parometalicheskih v avariynych regimah (review). Otchet Instituta atomnoj energii im. IV Kurchatova, p6–2257, 31 s.

    Google Scholar 

  • Kerb EH et al. (1982) LWR fuel rod behaviour during reactor tests under loss-of- coolant conditions: Results of the FR-2 in-pile tests, Journal of Nuclear Materials, vol 107 no 1 pp 55–77

    Article  Google Scholar 

  • MELCOR 1.8.2 (February 1993) Computer code manual, vol 2 Reference manuals and programmer’s guides, Sandia National Laboratories

    Google Scholar 

  • Moalem M and Olander DR (1991) The high-temperatures solubility of hydrogen in pure and oxygen-containing zircaloy, Journal of Nuclear Materials, vol 178 p 61

    Article  Google Scholar 

  • Olander DR (1996) Materials chemistry and transport modelling for severe accident analysis in light-water reactors III: Fuel dissolution by molten cladding, Nuclear Engineering and Design,vol 162 pp257-270

    Article  Google Scholar 

  • Olsen CS, Jensen SM, Carlson ER and Cook BA (1989) Materials interactions and temperatures in the Three Mile Island Unit 2 core, Nuclear Technology, vol 87

    Google Scholar 

  • Potter PE, Rand MH and Alcok CM (1985) Some chemical equilibria for accident analysis in pressurized water reactor systems, Journal of Nuclear Materials, vol 130 pp 139–153.

    Article  Google Scholar 

  • Powers DA (1–3 April 1992) Non-ideal solution modeling for predicting chemical phenomena during core debris interactions with concrete, OECD/CSNI Meeting on core debris-concrete interaction, KTG, Germany

    Google Scholar 

  • Powers DA, Brockmann JE and Shiver (Juli 1986) VANESA, A mechanistic model of radionuclide release and aerosol generation during core debris interaction with concrete, NUREG/CR-4308

    Google Scholar 

  • Reimann N (August 1981) DEHDIS - Ein Berechnungsmodell zur Aufteilung der Nachwärmeleistung in der metallischen und der oxidischen Phase einer LWR-Kernschmelze und im Containment, IRB-NR. 381/81, PNS-Nr. 614/81

    Google Scholar 

  • Rose KM, Mann CA and Hindle ED (1979) The axial distribution of deformation in the cladding of pressurized water reactor fuel rods in a loss-of-coolant accident, Nuclear Technology, vol 46 no 2 pp 220–227

    Google Scholar 

  • Rosinger HE (1984) A model to predict the failure of Zircaloy-4 fuel shearing during postulated LOCA conditions, Journal of Nuclear Materials, vol 120, no 1, pp 41–54

    Article  Google Scholar 

  • Shi S-Q (1995) Hydrogen concentration limit and critical temperature for delayed hydride cracking in zirconium Alloys, Journal of Nuclear Mate-rials, vol 218 pp 189–201

    Article  Google Scholar 

  • Une K, Imamura M, Amaya M and Korei Y (1995) Fuel Oxidation Behaviour of Defective BWR Fuel Rods, Journal of Nuclear Materials, vol 223 pp 40–50

    Article  Google Scholar 

  • Urbanic VF and Heidrich TR (1978) High-temperature oxidation of zir-caloy-2 and Zircaloy-4 in steam, Journal of Nuclear Materials, vol 75 pp251-261

    Article  Google Scholar 

  • Veshchunov MS and Hofrnann P (1996) Modelling of zircaloy dissolution by molten (Ag, In, Cd) absorber alloy, Journal of Nuclear Materials, vol 228 pp 318–329

    Article  Google Scholar 

  • Veshchunov MS and Hofmann P (1994) Dissolution of solid UO2 by molten zircaloy, Journal of Nuclear Materials, vol 209 pp 27–40

    Article  Google Scholar 

  • Vierow K, Liao Y, Johnson J, Kenton M, Gauntt R(2004) Severe accident analysis of a PWR station lackout with the MELCOR, MAAP4 and SCDAP/RELAP5 codes, Nuclear Engineering and Design, vol 234 pp 129–145

    Article  Google Scholar 

  • Voltchek A (1993) On the modelling of the pellet/cladding/steam interactions in the Framework of the oxygen diffusion theory, Institut problem besopasnogo razvitija atomnoj energetiki, preprint no NSI-14-93, str.1-25

    Google Scholar 

  • Yun JI, Suh KY and Kang CS (April 14–18, 2002) Heat and fission product transport in a molten U-Zr-O pool with crust, Proc. Of ICONE10, 10th Int. Conf. On Nuclear Engineering, Alington, VA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay I. Kolev .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolev, N.I. (2009). Core degradation. In: Multiphase Flow Dynamics 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92918-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92918-5_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92917-8

  • Online ISBN: 978-3-540-92918-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics