Skip to main content

Abstract

Fundamental mechanisms of jet noise are investigated by means of direct numerical simulation. In the mixing layer, subharmonics of the respective vortex pairing are found to be responsible for the main part of the generated noise which is directed in downstream direction. By modifying the phase shift between introduced disturbances it is possible to diminish or enhance relevant portions of the emitted sound. Optimal control has been applied successfully to a plane mixing layer. In the far field, the mean noise level could be reduced. Depending on the measurement line, some distributed control or anti-noise is generated by the control. A more realistic configuration is achieved by adding a splitter plate representing the nozzle end. Rectangular serrations lead to a breakdown of the large coherent spanwise vortical structures and thus provide a noise reduction of 9dB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airiau, C.: Non-parallel acoustic receptivity of a blasius boundary layer using an adjoint approach. Flow, Turb. Comb. 65, 347–367 (2000)

    Article  MATH  Google Scholar 

  2. Babucke, A., Dumbser, M., Utzmann, J.: A coupling scheme for direct numerical simulations with an acoustic solver. In: CEMRACS 2005 - Computational Aeroacoustics and Computational Fluid Dynamics in Turbulent Flows. ESAIM Proc., vol. 16, pp. 1–15 (2007)

    Google Scholar 

  3. Babucke, A., Kloker, M.J., Rist, U.: Numerical investigation of flow-induced noise generation at the nozzle end of jet engines. In: New Results in Numerical and Experimental Fluid Mechanics VI, Contributions to the 15. STAB/DGLR Symposium Darmstadt, pp. 413–420 (2007)

    Google Scholar 

  4. Babucke, A., Kloker, M.J., Rist, U.: DNS of a plane mixing layer for the investigation of sound generation mechanisms. Computers and Fluids 37(4), 360–368 (2008)

    Article  Google Scholar 

  5. Babucke, A., Linn, J., Kloker, M., Rist, U.: Direct numerical simulation of shear flow phenomena on parallel vector computers. In: High performance computing on vector systems: Proceedings of the High Performance Computing Center Stuttgart 2005, pp. 229–247. Springer, Berlin (2006)

    Google Scholar 

  6. Bogey, C., Bailly, C., Juve, D.: Numerical simulation of sound generated by vortex pairing in a mixing layer. AIAA J. 38(12), 2210–2218 (2000)

    Article  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A.: Spectral methods in fluid dynamics. Springer Series of Computational Physics. Springer, Berlin (1988)

    MATH  Google Scholar 

  8. Colonius, T., Lele, S.K., Moin, P.: Boundary conditions for direct computation of aerodynamic sound generation. AIAA Journal 31(9), 1574–1582 (1993)

    Article  MATH  Google Scholar 

  9. Colonius, T., Lele, S.K., Moin, P.: Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997)

    Article  MATH  Google Scholar 

  10. EAS3 (Ein-Ausgabe-System), http://www.iag.uni-stuttgart.de/eas3

  11. W. Eissler. Numerische Untersuchung zum laminar-turbulenten Strmungsumschlag in berschallgrenzschichten. Dissertation, Institute für Aerodynamik und Gasdynamik, Universität Stuttgart (1995)

    Google Scholar 

  12. Freund, J.B.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)

    Article  MATH  Google Scholar 

  13. Giles, M.B.: Nonreflecting boundary conditions for Euler equation calculations. AIAA J. 28(12), 2050–2058 (1990)

    Article  Google Scholar 

  14. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kloker, M.J.: A robust high-resolution split-type compact FD scheme for spatial DNS of boundary-layer transition. Appl. Sci. Res. 59, 353–377 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. Phys. Fluids 101, 104–129 (1992)

    MATH  MathSciNet  Google Scholar 

  17. Spagnoli, B.: Etude numérique de sensibilité et contrôle optimal du bruit aéroacoustique généré par une couche de mélange compressible bidimensionnelle. Thèse de doctorat de l’Université Paul Sabatier, Toulouse (2006)

    Google Scholar 

  18. Spagnoli, B., Airiau, C.: Adjoint analysis for noise control in a two-dimensional compressible mixing layer. Computers and Fluids 37(4), 475–486 (2008)

    Article  Google Scholar 

  19. Walther, S., Airiau, C., Bottaro, A.: Optimal control of Tollmien-Schlichting waves in a developing boundary layer. Phys. Fluids 13, 2087–2096 (2001)

    Article  Google Scholar 

  20. Wei, M., Freund, J.: A noise controlled free shear flow. J. Fluid Mech. 546, 123–152 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babucke, A., Spagnoli, B., Airiau, C., Kloker, M., Rist, U. (2009). Mechanisms and Active Control of Jet-Induced Noise. In: Brun, C., Juvé, D., Manhart, M., Munz, CD. (eds) Numerical Simulation of Turbulent Flows and Noise Generation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89956-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89956-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89955-6

  • Online ISBN: 978-3-540-89956-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics