Skip to main content

Chosen Ciphertext Secure Public Key Encryption with a Simple Structure

  • Conference paper
Advances in Information and Computer Security (IWSEC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5312))

Included in the following conference series:

Abstract

In this paper, we present a new public key encryption scheme with an easy-to-understand structure. More specifically, in the proposed scheme, for fixed group elements g 1,...,g ℓ in the public key a sender computes only \(g_1^r,\ldots,g_\ell^r\) for encryption where r is a single random number. Due to this simple structure, its security proof becomes very short (and one would easily understand the simulator’s behavior for simultaneously dealing with embedding a hard problem and simulating a decryption oracle). Our proposed scheme is provably chosen-ciphertext secure under the gap Diffie-Hellman assumption (without random oracles). A drawback of our scheme is that its ciphertext is much longer than known practical schemes. We also propose a modification of our scheme with improved efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proc. of CCS 1993, pp. 62–73 (1993)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

    Google Scholar 

  4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proc. of STOC 1988, pp. 103–112 (1988)

    Google Scholar 

  5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Proc. of CCS 2005, pp. 320–329 (2005)

    Google Scholar 

  9. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proc. of FOCS 2001, pp. 136–145 (2001)

    Google Scholar 

  10. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc. of STOC 1998, pp. 209–218 (1998)

    Google Scholar 

  11. Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., shelat, A., Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: Proc. of STOC 1991, pp. 542–552 (1991)

    Google Scholar 

  16. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. on Inform. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proc. of STOC 1989, pp. 25–32 (1989)

    Google Scholar 

  20. Halevi, S.: EME*: extending EME to handle arbitrary-length messages with associated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007), http://eprint.iacr.org/2007/036

    Chapter  Google Scholar 

  26. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proc. of STOC 1990, pp. 427–437 (1990)

    Google Scholar 

  28. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Okamoto, T., Pointcheval, D.: REACT: rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  30. Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  31. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

    Google Scholar 

  32. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  33. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  34. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1) (manuscript, 2001)

    Google Scholar 

  35. Waters, B.: Efficient identity based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hanaoka, G., Imai, H., Ogawa, K., Watanabe, H. (2008). Chosen Ciphertext Secure Public Key Encryption with a Simple Structure . In: Matsuura, K., Fujisaki, E. (eds) Advances in Information and Computer Security. IWSEC 2008. Lecture Notes in Computer Science, vol 5312. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89598-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89598-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89597-8

  • Online ISBN: 978-3-540-89598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics