Skip to main content

Aposematic (Warning) Coloration in Plants

  • Chapter
  • First Online:
Plant-Environment Interactions

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

Abstract

Aposematic (warning) coloration is a common defense in plants, although it was largely ignored before 2001. The fact that many aposematic animals use both plant-based pigments and sequestered poisonous molecules to become aposematic emphasizes the absurdity of neglecting the aposematic nature of so many plants. Similar to the situation in animals, aposematic coloration in plants is commonly yellow, orange, red, brown, black, white, or combinations of these colors. Aposematic coloration is expressed by thorny, spiny, prickly and poisonous plants, and by plants that are unpalatable for various other reasons. Plants that mimic aposematic plants or aposematic animals are also known. Many types of aposematic coloration also serve other functions at the same time, such as physiological, communicative and even other defensive functions. It is therefore difficult in many cases to evaluate the relative functional share of visual aposematism in various color patterns of plants and the specific selective agents involved in their evolution. Aposematic coloration is part of a broader phenomenon of defensive coloration in plants; this topic has also received only limited attention, as is evident from the lack of a regular and systematic description of these color patterns in published floras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA, Karban R (2000) Specificity of constitutive and induced resistance: pigment glands influence mites and caterpillars on cotton plants. Entomol Exp Appl 96:39–49

    Article  CAS  Google Scholar 

  • Agrawal AA, Spiller DA (2004) Polymorphic buttonwood: effects of disturbance on resistance to herbivores in green and silver morphs of a Bahamian shrub. Am J Bot 91:1990–1997

    Article  PubMed  Google Scholar 

  • Armbruster WS (1997) Exaptations link evolution of plant–herbivore and plant–pollinator interactions: a phylogenetic inquiry. Ecology 78:1661–1672

    Google Scholar 

  • Armbruster WS, Howard JJ, Clausen TP, Debevec EM, Loquvam JC, Matsuki M, Cerendolo B, Andel F (1997) Do biochemical exaptations link evolution of plant defense and pollination systems? Historical hypotheses and experimental tests with Dalechampia vines. Am Nat 149:461–484

    Article  Google Scholar 

  • Archetti M (2000) The origin of autumn colours by coevolution. J Theor Biol 205:625–630

    Article  PubMed  CAS  Google Scholar 

  • Archetti M (2007a) Autumn colours and the nutritional translocation hypothesis: a theoretical assessment. J Theor Biol 244:714–721

    Article  CAS  Google Scholar 

  • Archetti M (2007b) Colour preference as evidence for the theories on the evolution of autumn colours. J Theor Biol 245:595–596

    Article  Google Scholar 

  • Archetti M, Brown SP (2004) The coevolution theory of autumn colours. Proc R Soc Lond B 271:1219–1223

    Article  Google Scholar 

  • Archetti M, Brown SP (2006) Putting 'red alerts' in an ecological and evolutionary context. BioEssays 28:959

    Article  PubMed  Google Scholar 

  • Archetti M, Leather SR (2005) A test of the coevolution theory of autumn colours: colour preference of Rhopalosiphum padi on Prunus padus. Oikos 110:339–343

    Article  Google Scholar 

  • Atsatt PR, O'Dowd DJ (1976) Plant defense guilds. Science 193:24–29

    Article  PubMed  CAS  Google Scholar 

  • Augner M (1994) Should a plant always signal its defence against herbivores? Oikos 70:322–332

    Article  Google Scholar 

  • Augner M (1995) Low nutritive quality as a plant defence: effects of herbivore-mediated interactions. Evol Ecol 9:605–616

    Article  Google Scholar 

  • Augner M, Bernays EA (1998) Plant defence signals and Batesian mimicry. Evol Ecol 12:667–679

    Article  Google Scholar 

  • Benson L (1982) The cacti of the United States and Canada. Stanford University Press, Stanford

    Google Scholar 

  • Benson WW, Brown KS, Gilbert LE (1975) Coevolution of plants and herbivores: passion flower butterflies. Evolution 29:659–680

    Article  Google Scholar 

  • Bernays EA, Driver GC, Bilgener M (1989) Herbivores and plant tannins. Adv Ecol Res 19:263–302

    Article  Google Scholar 

  • Borowicz VA (1988) Do vertebrates reject decaying fruit? An experimental test with Cornus amomum fruits. Oikos 53:74–78

    Article  Google Scholar 

  • Bowers DM (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 331–371

    Google Scholar 

  • Bradshaw HD Jr, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    Article  PubMed  CAS  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    Article  PubMed  CAS  Google Scholar 

  • Bristow CM (1991) Why are so few aphids ant attended? In: HuxleyCR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, London, pp 104–119

    Google Scholar 

  • Brooks R, Owen-Smith N (1994) Plant defences against mammalian herbivores: are juvenile Acacia more heavily defended than mature trees? Bothalia 24:211–215

    Google Scholar 

  • Brown SP (2005) A view from Mars. In: Ridley M (ed) Narrow roads of gene land—the collected papers of W. D. Hamilton, vol 3—last words. Oxford University Press, Oxford, pp 350–356

    Google Scholar 

  • Brown JH, Lieberman GA, Dengler WF (1972) Woodrats and cholla: dependence of a small mammal population on the density of cacti. Ecology 53:310–313

    Article  Google Scholar 

  • Buchholz R, Levey DJ (1990) The evolutionary triad of microbes, fruits, and seed dispersers: an experiment in fruit choice by cedar waxwings, Bombycilla cedrorum. Oikos 59:200–204

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  • Cahn MG, Harper JL (1976) The biology of the leaf mark polymorphism in Trifolium repens L. 2. Evidence for the selection of leaf marks by rumen fistulated sheep. Heredity 37:327–333

    Google Scholar 

  • Campitelli BE, Steglik I, Stinchcombe JR (2008) Leaf variegation is associated with reduced herbivore damage in Hydrophyllum virginianum. Botany 86:306–313

    Article  Google Scholar 

  • Carrascal LM, Díaz JA, Huertas DL, Mozetich I (2001) Behavioral thermoregulation by treecreepers: trade-off between saving energy and reducing crypsis. Ecology 82:1642–1654

    Article  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chittka L, Döring TF (2007) Are autumn foliage colors red signals to aphids? PLoS Biol 5:e187

    Article  PubMed  CAS  Google Scholar 

  • Cipollini ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372

    Article  PubMed  CAS  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Syst 21:275–297

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(Suppl):S99–S127

    Article  PubMed  Google Scholar 

  • Clegg MT, Durbin ML (2003) Tracing floral adaptations from ecology to molecules. Nat Rev Genet 4:206–215

    Article  PubMed  CAS  Google Scholar 

  • Clement CR, Manshardt RM (2000) A review of the importance of spines for pejibaye heart-of-palm production. Sci Hort 83:11–23

    Article  Google Scholar 

  • Close DC, Beadle CL (2003) The ecophysiology of foliar anthocyanin. Bot Rev 69:149–161

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Cook AD, Atsatt PR, Simon CA (1971) Doves and dove weed: multiple defenses against avian predation. BioScience 21:277–281

    Article  Google Scholar 

  • Cooper SM, Owen-Smith N (1986) Effects of plant spinescence on large mammalian herbivores. Oecologia 68:446–455

    Article  Google Scholar 

  • Cornett JW (1986) Spineless petioles in Washingtonia filifera (Arecaceae). Madroño 33:76–78

    Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen, London

    Google Scholar 

  • Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Article  Google Scholar 

  • Dirzo R (2002) Lying leaves. Science 297:1119

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology. An optimization approach. Chapman and Hall, London

    Google Scholar 

  • Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87

    Article  CAS  Google Scholar 

  • Dominy ND, Lucas PW, Ramsden W, Riba-Hernandez P, Stoner KE, Turner IM (2002) Why are young leaves red? Oikos 98:163–176

    Article  Google Scholar 

  • Edmunds M (1974) Defence in animals. A survey of anti-predator defences. Longman, Harlow

    Google Scholar 

  • Edmunds M, Grayson J (1991) Camouflage and selective predation in caterpillars of the poplar and eyed hawkmoths (Laothoe populi and Smerinthus ocellata). Biol J Linn Soc 42:467–480

    Article  Google Scholar 

  • Ehleringer JR, Ullmann I, Lange OL, Farquhar GD, Cowan IR, Schulze E-D, Ziegler H (1986) Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70:234–237

    Article  Google Scholar 

  • Eisner T (1964) Catnip: its Raison d'Être. Science 146:1318–1320

    Article  PubMed  CAS  Google Scholar 

  • Eisner T (1981) Leaf folding in a sensitive plant: a defensive thorn-exposure mechanism? Proc Natl Acad Sci USA 78:402–404

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Grant RP (1981) Toxicity, odor aversion, and "olfactory aposematism". Science 213:476

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Eisner M, Siegler M (2005) Secret weapons. Defenses of insects, spiders, scorpions, and other many-legged creatures. Harvard University Press, Cambridge

    Google Scholar 

  • Endler JA (1981) An overview of the relationships between mimicry and crypsis. Biol J Linn Soc 16:25–31

    Article  Google Scholar 

  • Endler JA (1984) Progressive background matching in moths, and a quantitative measure of crypsis. Biol J Linn Soc 22:187–231

    Article  Google Scholar 

  • Endler JA, Mappes J (2004) Predator mixes and the conspicuousness of aposematic signals. Am Nat 163:532–547

    Article  PubMed  Google Scholar 

  • Ergonul O, Erbay A, Eren S, Dokuzoguz B (2003) Analysis of the case fatality rate of tetanus among adults in a tertiary hospital in Turkey. Eur J Clin Microbiol Infect Dis 22:188–190

    PubMed  CAS  Google Scholar 

  • Faegri K, Pijl L van der (1979) The principles of pollination ecology, 3rd edn. Pergamon, Oxford

    Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic, London

    Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon, Oxford

    Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. Rec Adv Phytochem 10:1–40

    CAS  Google Scholar 

  • Finch S, Jones TH (1989) An analysis of the deterrent effect of Aphids on cabbage root fly (Delia radicum) egg-laying. Ecol Entomol 14:387–391

    Article  Google Scholar 

  • Fineblum WL, Rausher MD (1997) Do floral pigmentation genes also influence resistance to enemies? The W locus in Ipomoea purpurea. Ecology 78:1646–1654

    Google Scholar 

  • Franceschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  PubMed  CAS  Google Scholar 

  • Fu HY, Chen SJ, Chen RF, Ding WH, Kuo-Huang LL, Huang RN (2006) Identification of oxalic acid and tartaric acids as major persistent pain-inducing toxins in the stinging hairs of the Nettle, Urtica thunbergiana. Ann Bot 98:57–65

    Article  PubMed  CAS  Google Scholar 

  • Gilbert LE (1980) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 210–240

    Google Scholar 

  • Gittleman JL, Harvey PH (1980) Why are distasteful prey not cryptic? Nature 286:149–150

    Article  Google Scholar 

  • Givnish TJ (1990) Leaf mottling: relation to growth form and leaf phenology and possible role as camouflage. Funct Ecol 4:463–474

    Article  Google Scholar 

  • Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. J Chem Ecol 28:1301–1313

    Article  PubMed  CAS  Google Scholar 

  • Gould KS (2004) Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320

    Article  PubMed  Google Scholar 

  • Gould KS, Lee DW, Callow JA (eds) (2002a) Anthocyanins in leaves. Adv Bot Res 37

    Google Scholar 

  • Gould KS, Neill SO, Vogelmann TC (2002b) A unified explanation for anthocyanins in leaves? Adv Bot Res 37:167–192

    Article  CAS  Google Scholar 

  • Gowda JH, Palo RT (2003) Age-related changes in defensive traits of Acacia tortilis Hayne. Afr J Ecol 41:218–223

    Article  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    Article  PubMed  CAS  Google Scholar 

  • Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci USA 98:13745–13750

    Article  PubMed  CAS  Google Scholar 

  • Grubb PJ (1992) A positive distrust in simplicity—lessons from plant defences and from competition among plants and among animals. J Ecol 80:585–610

    Article  Google Scholar 

  • Guilford T, Nicol C, Rothschild M, Moore BP (1987) The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc 31:113–128

    Article  Google Scholar 

  • Guthrie RD, Petocz RG (1970) Weapon automimicry among animals. Am Nat 104:585–588

    Article  Google Scholar 

  • Hagen SB, Folstad I, Jakobsen SW (2003) Autumn colouration and herbivore resistance in mountain birch (Betula pubescens). Ecol Lett 6:807–811

    Article  Google Scholar 

  • Hagen SB, Debeausse S, Yoccoz NG, Folstad I (2004) Autumn coloration as a signal of tree condition. Proc R Soc Lond B 271(Suppl):S184-S185

    Article  Google Scholar 

  • Halpern M, Raats D, Lev-Yadun S (2007a) Plant biological warfare: thorns inject pathogenic bacteria into herbivores. Environ Microbiol 9:584–592

    Article  CAS  Google Scholar 

  • Halpern M, Raats D, Lev-Yadun S (2007b) The potential anti-herbivory role of microorganisms on plant thorns. Plant Signal Behav 2:503–504

    Article  Google Scholar 

  • Hamilton WD, Brown SP (2001) Autumn tree colours as a handicap signal. Proc R Soc Lond B 268:1489–1493

    Article  CAS  Google Scholar 

  • Hansen DM, Olesen JM, Mione T, Johnson SD, Müller CB (2007) Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol Rev 82:83–111

    Article  PubMed  Google Scholar 

  • Harborne JB (1982) Introduction to ecological biochemistry. Academic, London

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Harvey PH, Paxton RJ (1981) The evolution of aposematic coloration. Oikos 37:391–396

    Article  Google Scholar 

  • Hatier J-HB, Gould KS (2008) Foliar anthocyanins as modulators of stress signals. J Theor Biol 253:625–627

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM (1982) Defense of ripe fruit from pests: its significance in relation to plant-disperser interactions. Am Nat 120:218–241

    Article  Google Scholar 

  • Hill ME (2006) The effect of aposematic coloration on the food preference of Aphelocoma coerulescens, the Florida scrub jay. Bios 77:97–106

    Article  Google Scholar 

  • Hinton HE (1973) Natural deception. In: Gregory RL, Gombrich EH (eds) Illusion in nature and art. Duckworth, London, pp 97–159

    Google Scholar 

  • Hoch WA, Zeldin EL, McCown BH (2001) Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol 21:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hoch WA, Singsaas EL, McCown BH (2003) Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol 133:1296–1305

    CAS  Google Scholar 

  • Hodes RM, Teferedegne B (1990) Tetanus in Ethiopia: analysis of 55 cases from Addis Ababa. E Afr Med J 67:887–893

    CAS  Google Scholar 

  • Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97:222–234

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK, Peltonen P (2002) Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99:184–188

    Article  Google Scholar 

  • Huxley CR, Cutler DF (1991) Ant–plant interactions. Oxford University Press, London

    Google Scholar 

  • Inbar M, Lev-Yadun S (2005) Conspicuous and aposematic spines in the animal kingdom. Naturwissenschaften 92:170–172

    Article  PubMed  CAS  Google Scholar 

  • Inbar M, Doostdar H, Mayer RT (1999) Effects of sessile Whitefly nymphs (Homoptera: Aleyrodidae) on leaf-chewing larvae (Lepidoptera: Noctuidae). Environ Entomol 28:353–357

    Google Scholar 

  • Izhaki I (2002) Emodin—a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217

    Article  CAS  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Amer Nat 111:691–713

    Article  CAS  Google Scholar 

  • Janzen DH (1979) New horizons in the biology of plant defenses. In: Rosenthal GA, Janzen DH (eds) Herbivores their interaction with secondary plant metabolites. Academic, Orlando, pp 331–350

    Google Scholar 

  • Janzen DH (1986) Chihuahuan desert nopaleras: defaunated big mammal vegetation. Annu Rev Ecol Syst 17:595–636

    Article  Google Scholar 

  • Janzen DH, Martin PS (1982) Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:19–27

    Article  PubMed  CAS  Google Scholar 

  • Jensen GB, Hansen BM, Eilenberg J, Mahillon J (2003) The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol 5:631–640

    Article  PubMed  CAS  Google Scholar 

  • Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    Article  PubMed  Google Scholar 

  • Johnson SD, Hargreaves AL, Brown M (2006) Dark, bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 87:2709–2716

    Article  PubMed  Google Scholar 

  • Jolivet P (1998) Interrelationship between insects and plants. CRC, Boca Raton

    Google Scholar 

  • Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic, London

    Google Scholar 

  • Junker R, Chung AYC, Blüthgen N (2007) Interaction between flowers, ants and pollinators: additional evidence for floral repellence against ants. Ecol Res 22:665–670

    Article  Google Scholar 

  • Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LLP, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072

    Article  PubMed  CAS  Google Scholar 

  • Karageorgou P, Manetas Y (2006) The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiol 26:613–621

    Article  PubMed  CAS  Google Scholar 

  • Karageorgou P, Buschmann C, Manetas Y (2008) Red leaf color as a warning signal against insect herbivory: honest or mimetic? Flora 203:648–652

    Article  Google Scholar 

  • Kaye H, Mackintosh NJ, Rothschild M, Moore BP (1989) Odour of pyrazine potentiates an association between environmental cues and unpalatable taste. Anim Behav 37:563–568

    Article  Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular timetable of autumn senescence. Plant Physiol 139:1635–1648

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore induced plant volatile emissions in nature. Science 291:2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Kettlewell B (1973) The evolution of melanism. Clarendon, Oxford

    Google Scholar 

  • Knight RS, Siegfried WR (1983) Inter-relationships between type, size and color of fruits and dispersal in Southern African trees. Oecologia 56:405–412

    Article  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Komárek S (1998) Mimicry, aposematism and related phenomena in animals and plants: bibliography 1800–1990. Vesmir, Prague

    Google Scholar 

  • Kozlowski TT (1971) Growth and development of trees. vol. I. Academic, New York

    Google Scholar 

  • Kursar TA, Coley PD (1991) Nitrogen content and expansion rate of young leaves of rainforest species: implications for herbivory. Biotropica 23:141–150

    Article  Google Scholar 

  • Kursar TA, Coley PD (1992) Delayed greening in tropical leaves: an antiherbivory defense? Biotropica 24:256–262

    Article  Google Scholar 

  • Kursar TA, Coley PD (2003) Convergence in defense syndromes of young leaves in tropical rainforests. Biochem Syst Ecol 31:929–949

    Article  CAS  Google Scholar 

  • Lachmann ML, Számadó S, Bergstrom CT (2001) Cost and conflict in animal signals and human language. Proc Natl Acad Sci USA 98:13189–13194

    Article  PubMed  CAS  Google Scholar 

  • Launchbaugh KL, Provenza FD (1993) Can plants practice mimicry to avoid grazing by mammalian herbivores? Oikos 66:501–504

    Article  Google Scholar 

  • Laycock WA (1978) Coevolution of poisonous plants and large herbivores on rangelands. J Range Manage 31:335–342

    Article  Google Scholar 

  • Lee DW (2002) Anthocyanins in autumn leaf senescence. Adv Bot Res 37:147–165

    Article  CAS  Google Scholar 

  • Lee D (2007) Nature's palette. The science of plant color. University of Chicago Press, Chicago

    Google Scholar 

  • Lee DW, Gould KS (2002) Anthocyanins in leaves and other vegetative organs: an introduction. Adv Bot Res 37:1–16

    Article  CAS  Google Scholar 

  • Lee DW, Brammeler S, Smith AP (1987) The selective advantages of anthocyanins in developing leaves of mango and cacao. Biotropica 19:40–49

    Article  Google Scholar 

  • Lee DW, O`Keefe J, Holbrook NM, Feild TS (2003) Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol Res 18:677–694

    Article  CAS  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

    Article  Google Scholar 

  • Lev-Yadun S (2001) Aposematic (warning) coloration associated with thorns in higher plants. J Theor Biol 210:385–388

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S (2003a) Why do some thorny plants resemble green zebras? J Theor Biol 244:483–489

    Article  Google Scholar 

  • Lev-Yadun S (2003b) Weapon (thorn) automimicry and mimicry of aposematic colorful thorns in plants. J Theor Biol 244:183–188

    Article  Google Scholar 

  • Lev-Yadun S (2006a) Defensive functions of white coloration in coastal and dune plants. Isr J Plant Sci 54:317–325

    Article  Google Scholar 

  • Lev-Yadun S (2006b) Defensive coloration in plants: a review of current ideas about anti-herbivore coloration strategies. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. vol. IV. Global Science Books, London, pp 292–299

    Google Scholar 

  • Lev-Yadun S, Gould KS (2007) What do red and yellow autumn leaves signal? Bot Rev 73:279–289

    Article  Google Scholar 

  • Lev-Yadun S, Gould KS (2008) Role of anthocyanins in plant defense. In: Gould KS, Davies KM, Winefield C (eds) Life's colorful solutions: the biosynthesis, functions, and applications of anthocyanins. Springer, Berlin, pp 21–48

    Google Scholar 

  • Lev-Yadun S, Halpern M (2007) Ergot (Claviceps purpurea)—an aposematic fungus. Symbiosis J 43:105–108

    Google Scholar 

  • Lev-Yadun S, Halpern M (2008) External and internal spines in plants insert pathogenic microorganisms into herbivore's tissues for defense. In: Van Dijk T (ed) Microbial ecology research trends. Nova Scientific, New York, pp 155–168

    Google Scholar 

  • Lev-Yadun S, Inbar M (2002) Defensive ant, aphid and caterpillar mimicry in plants. Biol J Linn Soc 77:393–398

    Article  Google Scholar 

  • Lev-Yadun S, Ne'eman G (2004) When may green plants be aposematic? Biol J Linn Soc 81:413–416

    Article  Google Scholar 

  • Lev-Yadun S, Ne'eman G (2006) Color changes in old aposematic thorns, spines, and prickles. Isr J Plant Sci 54:327–333

    Article  Google Scholar 

  • Lev-Yadun S, Dafni A, Inbar M, Izhaki I, Ne'eman G (2002) Colour patterns in vegetative parts of plants deserve more research attention. Trends Plant Sci 7:59–60

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S, Dafni A, Flaishman MA, Inbar M, Izhaki I, Katzir G, Ne'eman G (2004) Plant coloration undermines herbivorous insect camouflage. BioEssays 26:1126–1130

    Article  PubMed  Google Scholar 

  • Madden D, Young TP (1992) Symbiotic ants as an alternative defense against giraffe herbivory in spinescent Acacia drepanolobium. Oecologia 91:235–238

    Article  Google Scholar 

  • Majerus MEN (1998) Melanism. Evolution in Action. Oxford University Press, Oxford

    Google Scholar 

  • Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508

    Article  Google Scholar 

  • Manzur MI, Courtney SP (1984) Influence of insect damage in fruits of hawthorn on bird foraging and seed dispersal. Oikos 43:265–270

    Article  Google Scholar 

  • Mappes J, Marples N, Endler JA (2005) The complex business of survival by aposematism. Trends Ecol Evol 20:598–603

    Article  PubMed  Google Scholar 

  • Massei G, Cotterill JV, Coats JC, Bryning G, Cowan DP (2007) Can Batesian mimicry help plants to deter herbivory? Pest Manage Sci 63:559–563

    Article  CAS  Google Scholar 

  • Matile P (2000) Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp Gerontol 35:145–158

    Article  PubMed  CAS  Google Scholar 

  • Merilaita S, Tuomi J, Jormalainen V (1999) Optimization of cryptic coloration in heterogeneous habitat. Biol J Linn Soc 67:151–161

    Article  Google Scholar 

  • Midgley JJ (2004) Why are spines of African Acacia species white? Afr J Range Forage Sci 21:211–212

    Article  Google Scholar 

  • Midgley JJ, Botha MA, Balfour D (2001) Patterns of thorn length, density, type and colour in African Acacias. Afr J Range Forage Sci 18:59–61

    Article  Google Scholar 

  • Milewski AV, Young TP, Madden D (1991) Thorns as induced defenses: experimental evidence. Oecologia 86:70–75

    Article  Google Scholar 

  • Montegomery JM, Gillespie D, Sastrawan P, Fredeking TM, Stewart GL (2002) Aerobic salivary bacteria in wild and captive Komodo dragons. J Wildl Dis 38:545–551

    Google Scholar 

  • Moore BP, Brown WV, Rothschild M (1990) Methylalkylpyrazines in aposematic insects, their hostplants and mimics. Chemoecology 1:43–51

    Article  CAS  Google Scholar 

  • Moran N, Hamilton WD (1980) Low nutritive quality as defence against herbivores. J Theor Biol 86:247–254

    Article  Google Scholar 

  • Myers JH, Bazely D (1991) Thorns, spines, prickles, and hairs: are they stimulated by herbivory and do they deter herbivores? In: Tallamy DW, Raupp MJ (eds) Phytochemical induction by herbivores. Wiley, New York, pp 325–344

    Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  CAS  Google Scholar 

  • Niemelä P, Tuomi J (1987) Does the leaf morphology of some plants mimic caterpillar damage? Oikos 50:256–257

    Article  Google Scholar 

  • Numata S, Kachi N, Okuda T, Manokaran N (2004) Delayed greening, leaf expansion, and damage to sympatric Shorea species in a lowland rain forest. J Plant Res 117:19–25

    Article  PubMed  Google Scholar 

  • Omacinl M, Chaneton EJ, Ghersa CM, Müller CB (2001) Symbiotic fungal endophytes control insect host–parasite interaction webs. Nature 409:78–81

    Article  CAS  Google Scholar 

  • Ougham HJ, Morris P, Thomas H (2005) The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr Top Dev Biol 66:135–160

    Article  PubMed  CAS  Google Scholar 

  • Ougham H, Thomas H, Archetti M (2008) The adaptive value of leaf colour. New Phytol 179:9–13

    Article  PubMed  Google Scholar 

  • Pascual FB, McGinley EL, Zanardi LR, Cortese MM, Murphy TV (2003) Tetanus surveillance, United States, 1998–2000 (52:SS03 1–8)http://www.cdc.gov/mmwr/preview/mmwrhtml/ss5203a1.htm.

  • Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85

    Article  Google Scholar 

  • Perevolotsky A, Haimov Y (1991) Structural response of Mediterranean woodland species to disturbance: evidence of different defense strategies. Isr J Bot 40:305–313

    Google Scholar 

  • Pijl L van der (1982) Principles of dispersal in higher plants, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Potter DA, Kimmerer TW (1988) Do holly leaf spines really deter herbivory? Oecologia 75:216–221

    Article  Google Scholar 

  • Preston-Mafham R, Preston-Mafham K (1994) Cacti: the illustrated dictionary. Timber, Portland

    Google Scholar 

  • Provenza FD, Kimball BA, Villalba JJ (2000) Roles of odor, taste, and toxicity in the food preferences of lambs: implications for mimicry in plants. Oikos 88:424–432

    Article  Google Scholar 

  • Purser B (2003) Jungle bugs: masters of camouflage and mimicry. Firefly, Toronto

    Google Scholar 

  • Ramirez CC, Lavandero B, Archetti M (2008) Coevolution and the adaptive value of autumn tree colours: colour preference and growth rates of a southern beech aphid. J Evol Biol 21:49–56

    PubMed  CAS  Google Scholar 

  • Rebollo S, Milchunas DG, Noy-Meir I, Chapman PL (2002) The role of spiny plant refuge in structuring grazed shortgrass steppe plant communities. Oikos 98:53–64

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest: an ecological study, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Richmond KE, Sussman M (2003) Got silicon? The non-essential beneficial plant nutrient. Curr Opin Plant Biol 6:268–272

    Article  PubMed  CAS  Google Scholar 

  • Ridley HN (1930) The dispersal of plants throughout the world. L. Reeve, Ashford

    Google Scholar 

  • Robbins CT, Hanley TA, Hagerman AE, Hjeljord O, Baker DL, Schwartz CC, Mautz WW (1987) Role of tannins in defending plants against ruminants: reduction in protein availability. Ecology 68:98–107

    Article  CAS  Google Scholar 

  • Rolshausen G, Schaefer HM (2007) Do aphids paint the tree red (or yellow): can herbivore resistance or photoprotection explain colourful leaves in autumn? Plant Ecol 191:77–84

    Article  Google Scholar 

  • Rothschild M (1972) Some observations on the relationship between plants, toxic insects and birds. In: Harborne JB (ed) Phytochemical ecology. Academic, London, pp 1–12

    Google Scholar 

  • Rothschild M (1973) Secondary plant substances and warning colouration in insects. In: van Emden HF (ed) Insect/plant relationships (Symposia of the Royal Entomological Society of London, no. 6). Blackwell, Oxford, pp 59–83

    Google Scholar 

  • Rothschild M (1974) Modified stipules of Passiflora which resemble horned caterpillars. Proc R Entomol Soc Lond 39:16

    Google Scholar 

  • Rothschild M (1980) Remarks on carotenoids in the evolution of signals. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 20–51

    Google Scholar 

  • Rothschild M (1984) Aide mémoire mimicry. Ecol Entomol 9:311–319

    Article  Google Scholar 

  • Rothschild M (1986) The red smell of danger. New Sci 111:34–36

    Google Scholar 

  • Rothschild M, Moore B (1987) Pyrazines as alerting signals in toxic plants and insects. In: Labeyrie V, Fabres G, Lachaise D (eds) Insects–plants. Junk, Dordrecht, pp 97–101

    Google Scholar 

  • Rothschild M, Moore BP, Brown WV (1984) Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moths of the genera Zygaena and Amata (Lepidoptera). Biol J Linn Soc 23:375–380

    Article  Google Scholar 

  • Rubino DL, McCarthy BC (2004) Presence of aposematic (warning) coloration in vascular plants of southeastern Ohio. J Torrey Bot Soc 131:252–256

    Article  Google Scholar 

  • Ruiz N, Ward D, Saltz D (2002) Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defence? Funct Ecol 16:99–105

    Article  Google Scholar 

  • Ruxton GD, Sherratt TN (2006) Aggregation, defence and warning signals: the evolutionary relationship. Proc R Soc B 273:2417–2424

    Article  PubMed  Google Scholar 

  • Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack. The evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Sakai WS, Hanson M, Jones RC (1972) Raphids with barbs and grooves in Xanthosoma sagittifolium (Araceae). Science 178:314–315

    Article  PubMed  CAS  Google Scholar 

  • Savage JM, Slowinski JB (1992) The colouration of the venomous coral snakes (family Elapidae) and their mimics (families Aniliidae and Colubridae). Biol J Linn Soc 45:235–254

    Article  Google Scholar 

  • Schaefer HM, Gould KS (2007) Modelling the evolution of leaf colouration with binary assumptions is barking up the wrong tree. J Theor Biol 249:638–639

    Article  PubMed  Google Scholar 

  • Schaefer HM, Rolshausen G (2006) Plants on red alert: do insects pay attention? BioEssays 28:65–71

    Article  PubMed  Google Scholar 

  • Schaefer HM, Rolshausen G (2007) Aphids do not attend to leaf colour as visual signal, but to the handicap of reproductive investment. Biol Lett 3:1–4

    Article  PubMed  Google Scholar 

  • Schaefer HM, Schaefer V (2007) The evolution of visual fruit signals: concepts and constraints. In: Dennis AJ Schupp EW, Green R, Wescott DW (eds) Seed dispersal: theory and its application in a changing world. CAB International, Wallingford, pp 59–77

    Chapter  Google Scholar 

  • Schaefer HM, Schmidt V (2004) Detectability and content as opposing signal characteristics in fruits. Proc R Soc Lond B(Suppl) 271:S370–S373

    Article  Google Scholar 

  • Schaefer HM, Wilkinson DM (2004) Red leaves, insects and coevolution: a red herring? Trends Ecol Evol 19:616–618

    Article  PubMed  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Article  Google Scholar 

  • Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169(suppl):S159–S169

    Article  PubMed  Google Scholar 

  • Schoener TW (1987) Leaf pubescence in buttonwood: community variation in a putative defense against defoliation. Proc Natl Acad Sci USA 84:7992–7995

    Article  PubMed  CAS  Google Scholar 

  • Schoener TW (1988) Leaf damage in island buttonwood, Conocarpus erectus: correlations with pubescence, island area, isolation and the distribution of major carnivores. Oikos 53:253–266

    Article  Google Scholar 

  • Shapiro AM (1981a) Egg-mimics of Streptanthus (Cruciferae) deter oviposition by Pieris sisymbrii (Lepidoptera: Pieridae). Oecologia 48:142–143

    Article  Google Scholar 

  • Shapiro AM (1981b) The pierid red-egg syndrome. Am Nat 117:276–294

    Article  Google Scholar 

  • Sherratt TN, Wilkinson DM, Bain RS (2005) Explaining Dioscorides' "double difference": why are some mushrooms poisonous, and do they signal their unprofitability? Am Nat 166:767–775

    Article  PubMed  Google Scholar 

  • Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001

    Article  PubMed  CAS  Google Scholar 

  • Sinkkonen A (2006a) Sexual reproduction advances autumn leaf colours in mountain birch (Betula pubescens ssp. czerepanovii). J Evol Biol 19:1722–1724

    Article  CAS  Google Scholar 

  • Sinkkonen A (2006b) Do autumn leaf colours serve as a reproductive insurance against sucking herbivores? Oikos 113:557–562

    Article  Google Scholar 

  • Smith AP (1986) Ecology of leaf color polymorphism in a tropical forest species: habitat segregation and herbivory. Oecologia 69:283–287

    Article  Google Scholar 

  • Snow B, Snow D (1988) Birds and berries. A study of an ecological interaction. Poyser, Calton

    Google Scholar 

  • Soltau U, Dötterl S, Liede-Schumann S (2009) Leaf variegation in Caladixm steudneriifoium (Araceae): a case of mimicry? Evol Ecol (in press)

    Google Scholar 

  • Speed MP, Ruxton GD (2005) Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution 59:2499–2508

    PubMed  Google Scholar 

  • Stafford HA (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways. Plant Sci 101:91–98

    Article  CAS  Google Scholar 

  • Stamp NE, Wilkens RT (1993) On the cryptic side of life: being unapparent to enemies and the consequences for foraging and growth caterpillars. In Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 283–330

    Google Scholar 

  • Stephenson AG (1981) Toxic nectar deters nectar thieves of Catalpa speciosa. Am Midl Nat 105:381–383

    Article  Google Scholar 

  • Tewksbury JJ, Nabhan GP (2001) Directed deterrence by capsaicin in chillies. Nature 412:403–404

    Article  PubMed  CAS  Google Scholar 

  • Theimer TC, Bateman GC (1992) Patterns of prickly-pear herbivory by collared peccaries. J Wildl Manage 56:234–240

    Article  Google Scholar 

  • Thurston EL, Lersten NR (1969) The morphology and toxicology of plant stinging hairs. Bot Rev 35:393–412

    Article  CAS  Google Scholar 

  • Tomlinson PB (1990) The structural biology of palms. Clarendon, Oxford

    Google Scholar 

  • Tuomi J, Augner M (1993) Synergistic selection of unpalatability in plants. Evolution 47:668–672

    Article  Google Scholar 

  • Tullberg BS, Merilaita S, Wiklund C (2005) Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proc R Soc Lond B 272:1315–1321

    Article  Google Scholar 

  • Van Bael SA, Brawn JD, Robinson SK (2003) Birds defend trees from herbivores in a Neotropical forest canopy. Proc Natl Acad Sci USA 100:8304–8307

    Article  PubMed  CAS  Google Scholar 

  • Waldbauer GP (1988) Aposematism and Batesian mimicry. Measuring mimetic advantage in natural habitats. Evol Biol 22:227–259

    Google Scholar 

  • Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminum is involved in silicon-induced amelioration of aluminum toxicity in maize. Plant Physiol 136:3762–3770

    Article  PubMed  CAS  Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Article  Google Scholar 

  • Weiss MR (1995) Floral colour change: a widespread functional convergence. Am J Bot 82:167–195

    Article  Google Scholar 

  • Weiss MR, Lamont BB (1997) Floral colour change and insect pollination: a dynamic relationship. Isr J Plant Sci 45:185–199

    Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • White PS (1988) Prickle distribution in Aralia spinosa (Araliaceae). Am J Bot 75:282–285

    Article  Google Scholar 

  • Wickler W (1968) Mimicry in plants and animals. Weidenfeld and Nicolson, London

    Google Scholar 

  • Wiens D (1978) Mimicry in plants. Evol Biol 11:365–403

    Google Scholar 

  • Wilkinson DM, Sherratt TN, Phillip DM, Wratten SD, Dixon AFG, Young AJ (2002) The adaptive significance of autumn leaf colours. Oikos 99:402–407

    Article  Google Scholar 

  • Willey JM, Sherwood LM, Woolverton CJ (2008) Prescot, Harley, and Klein's microbiology, 7th edn. McGraw Hill, New York

    Google Scholar 

  • Williams KS, Gilbert LE (1981) Insects as selective agents on plant vegetative morphology: egg mimicry reduces egg laying by butterflies. Science 212:467–469

    Article  PubMed  CAS  Google Scholar 

  • Williamson GB (1982) Plant mimicry: evolutionary constraints. Biol J Linn Soc 18:49–58

    Article  Google Scholar 

  • Willson MF, Whelan CJ (1990) The evolution of fruit color in fleshy-fruited plants. Am Nat 136:790–809

    Article  Google Scholar 

  • Wimp GM, Whitham TG (2001) Biodiversity consequences of predation and host plant hybridization on an aphid–ant mutualism. Ecology 82:440–452

    Google Scholar 

  • Woolfson A, Rothschild M (1990) Speculating about pyrazines. Proc R Soc Lond B 242:113–119

    Article  CAS  Google Scholar 

  • Yamazaki K (2008) Autumn leaf colouration: a new hypothesis involving plant–ant mutualism via aphids. Naturwiss 95:671–676

    Article  PubMed  CAS  Google Scholar 

  • Young TP, Okello BD (1998) Relaxation of an induced defense after exclusion of herbivores: spines on Acacia drepanolobium. Oecologia 115:508–513

    Article  Google Scholar 

  • Young TP, Stanton ML, Christian CE (2003) Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101:171–179

    Article  Google Scholar 

  • Zahavi A (1975) Mate selection: a selection for a handicap. J Theor Biol 53:205–214

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A (1977) The cost of honesty (further remarks on the handicap principle). J Theor Biol 67:603–605

    Article  PubMed  CAS  Google Scholar 

  • Zahavi A (1991) On the definition of sexual selection, Fisher's model, and the evolution of waste and of signals in general. Anim Behav 42:501–503

    Article  Google Scholar 

  • Zahavi A, Zahavi A (1997) The handicap principle. A missing piece of Darwin's puzzle. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

I thank Shahal Abbo, Marco Archetti, Amots Dafni, Moshe Flaishman, Kevin Gould, Malka Halpern, Moshik Inbar, Ido Izhaki, Gadi Katzir, Gidi Ne'eman, Martin Schaefer, Ron Sederoff, Uri Shanas, and Pille Urbas for stimulating discussions, important comments, field trips and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simcha Lev-Yadun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lev-Yadun, S. (2009). Aposematic (Warning) Coloration in Plants. In: Balu¿ka, F. (eds) Plant-Environment Interactions. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89230-4_10

Download citation

Publish with us

Policies and ethics