Skip to main content

Investigation of Process-Specific Size Effects by 3D-FE-Simulations

  • Conference paper
High Performance Computing in Science and Engineering '08
  • 1193 Accesses

Summary

The miniaturization of cutting processes into the micrometer regime shows process-specific size effects like the nonlinear increase of the specific cutting force for decreasing cutting depth. In order to investigate these size effects, the mechanics of the material as well as the operation have to be investigated. A turning process was chosen to study the influence of process parameters like cutting depth h, cutting width b, cutting edge radii r, and cutting velocity v c on the specific reaction force by 3D-Finite-Element-Simulations for normalized AISI 1045. For an adequate numeric reproduction of the material behavior, a physically based rate-dependent plasticity law was used in combination with a failure criterion describing the material damage and chip separation. The characteristics of the influences of the different parameters were analyzed mathematically precisely by similarity mechanics. The characteristics of the chip shapes determined by numerical simulations were compared with experimental results and a good correlation was found. The finite element simulations were executed on the high end mainframe XC4000 for a significant improvement of the run time of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Albrecht. New development in the Theory of the Metal-Cutting Process Part I. The ploughing Process in Metal Cutting. Journal of Engineering for Industry, pages 348–358, 1960.

    Google Scholar 

  2. H. Autenrieth, M. Weber, J. Kotschenreuther, V. Schulze, D. Löhe, P. Gumbsch, and J. Fleischer. Influence of friction and process parameters on the specific cutting force and surface characterisitcs in micro cutting. Proceedings of the 10th CIRP International Workshop on Modeling of Machining Operations, pages 539–546, 2007.

    Google Scholar 

  3. M. Bäker. An investigation of the Chip Segmentation Process Using Finite Elements. Technische Mechanik, 23:1–9, 2003.

    Google Scholar 

  4. K.J. Bathe. Finite-Elemente-Methoden. Springer, 1990.

    Google Scholar 

  5. Frank Biesinger. Experimentelle und numerische Untersuchung zur Randschichtausbildung und Spanbildung beim Hochgeschwindigkeitsfräsen von CK45. PhD thesis, Universität Karlsruhe (TH), 2005.

    Google Scholar 

  6. E. Buckingham. On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev., 4:345–376, 1914.

    Article  Google Scholar 

  7. L. Delonnoy, T. Hochrainer, V. Schulze, D. Löhe, and P. Gumbsch. Similarity considerations on the simulation of turning processes of steels. Zeitschrift für Metallkunde, 96:761–769, 2005.

    Google Scholar 

  8. D. Dinesh, S. Swaminathan, S. Chandrasekar, and T.N. Farris. An intrinsic size-effect in machining due to the strain gradient. ASME/MED-IMECE, 12:197–204, 2001.

    Google Scholar 

  9. P.S. Follansbee and U.F. Kocks. A constitutive description of the deformation of copper based on the use of mechanical threshold stress as an internal state variable. Acta Metallurgica, 36:81–93, 1988.

    Article  Google Scholar 

  10. Y.B. Guo and D.W. Yen. A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of Materials Processing Technology, 155-156:1350–1356, 2004.

    Article  Google Scholar 

  11. C. Hortig and B. Svendsen. Simulation of chip formation during high-speed cutting. Journal of Materials Processing Technology, 186:66–76, 2007.

    Article  Google Scholar 

  12. G.R. Johnson and W.H. Cook. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21 (1):31–48, 1985.

    Article  Google Scholar 

  13. E.M. Kopalinsky and P.L.B. Oxley. Size effects in metal removal processes. Institute of Physics Conference Series, pages 389–396, 1984.

    Google Scholar 

  14. J. Kotschenreuther, L. Delonnoy, T. Hochrainer, M. Weber, J. Schmidt, J. Fleischer, V. Schulze, D. Löhe, and P. Gumbsch. Modellierung und experimentelle Untersuchungen zu Größeneffekten beim Stirndrehen von 90MnCrV8 im vergüteten Zustand. Strahltechnik, 27:219–240, 2005.

    Google Scholar 

  15. K. Liu. Process Modeling of Micro-Cutting including strain gradient effects. PhD thesis, Georgie Institute of Technology, 2005.

    Google Scholar 

  16. P. Ludwik. Elemente der technologischen Mechanik. Springer Verlag, Berlin, 1909.

    MATH  Google Scholar 

  17. F. Richter. Physikalische Eigenschaften von Stählen und ihre Temperaturabhängigkeit. Verlag Stahleisen M.B.H., Düsseldorf, 1983.

    Google Scholar 

  18. M. Shaw. The size effect in metal cutting. Sadhana, 28:875–896, 2003.

    Article  Google Scholar 

  19. R. Sievert, H.-D. Noack, A. Hamann, P. Löwe, K.N. Singh, G. Künecke, R. Clos, U. Schreppel, P. Veit, E. Uhlmann, and R. Zettier. Simulation der Spansegmentierung beim Hochgeschwindigkeitszerspanen unter Berücksichtigung duktiler Schädigung. Technische Mechanik, 23:216–233, 2003.

    Google Scholar 

  20. O. Vöhringer. Temperatur- und Geschwindigkeitsabhängigkeit der Streckgrenze von Kupferlegierungen. Zeitschrift für Metallkunde, 65:32–36, 1974.

    Google Scholar 

  21. M. Weber, T. Hochrainer, H. Autenrieth, L. Delonnoy, J. Kotschenreuther, P. Gumbsch, V. Schulze, D. Löhe, and J. Fleischer. Investigation of Size-Effects in Machining with Geometrically Defined Cutting Edges. Journal of Machining Science and Technology, 11:447–473, 2007.

    Article  Google Scholar 

  22. O.C. Zienkiewicz. Methode der finiten Elemente. Carl Hanser Verlag München Wien, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Autenrieth, H., Weber, M., Schulze, V., Gumbsch, P. (2009). Investigation of Process-Specific Size Effects by 3D-FE-Simulations. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_38

Download citation

Publish with us

Policies and ethics