Skip to main content

Integrating Sequence and Topology for Efficient and Accurate Detection of Horizontal Gene Transfer

  • Conference paper
Comparative Genomics (RECOMB-CG 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5267))

Included in the following conference series:

Abstract

One phylogeny-based approach to horizontal gene transfer (HGT) detection entails comparing the topology of a gene tree to that of the species tree, and using their differences to locate HGT events. Another approach is based on augmenting a species tree into a phylogenetic network to improve the fitness of the evolution of the gene sequence data under an optimization criterion, such as maximum parsimony (MP). One major problem with the first approach is that gene tree estimates may have wrong branches, which result in false positive estimates of HGT events, and the second approach is accurate, yet suffers from the computational complexity of searching through the space of possible phylogenetic networks.

The contributions of this paper are two-fold. First, we present a measure that computes the support of HGT events inferred from pairs of species and gene trees. The measure uses the bootstrap values of the gene tree branches. Second, we present an integrative method to speed up the approaches for augmenting species trees into phylogenetic networks.

We conducted data analysis and performance study of our methods on a data set of 20 genes from the Amborella mitochondrial genome, in which Jeffrey Palmer and his co-workers postulated a massive amount of horizontal gene transfer. As expected, we found that including poorly supported gene tree branches in the analysis results in a high rate of false positive gene transfer events. Further, the bootstrap-based support measure assessed, with high accuracy, the support of the inferred gene transfer events. Further, we obtained very promising results, in terms of both speed and accuracy, when applying our integrative method on these data sets (we are currently studying the performance in extensive simulations). All methods have been implemented in the PhyloNet and NEPAL tools, which are available in the form of executable code from http://bioinfo.cs.rice.edu .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Annals of Combinatorics 8(4), 391–408 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beiko, R.G., Hamilton, N.: Phylogenetic identification of lateral genetic transfer events. BMC Evolutionary Biology 6 (2006)

    Google Scholar 

  3. Bergthorsson, U., Adams, K.L., Thomason, B., Palmer, J.D.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

    Article  Google Scholar 

  4. Bergthorsson, U., Richardson, A., Young, G.J., Goertzen, L., Palmer, J.D.: Massive horizontal transfer of mitochondrial genes from diverse land plant donors to basal angiosperm Amborella. Proc. Nat’l Acad. Sci., USA 101, 17747–17752 (2004)

    Article  Google Scholar 

  5. Galtier, N.: A model of horizontal gene transfer and the bacterial phylogeny problem. Systematic Biology 56(4), 633–642 (2007)

    Article  Google Scholar 

  6. Gogarten, J.P., Doolittle, W.F., Lawrence, J.G.: Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19(12), 2226–2238 (2002)

    Google Scholar 

  7. Gorecki, P.: Reconciliation problems for duplication, loss and horizontal gene transfer. In: Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2004), pp. 316–325 (2004)

    Google Scholar 

  8. Hallett, M.T., Lagergren, J.: Efficient algorithms for lateral gene transfer problems. In: Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2001), pp. 149–156. ACM Press, New York (2001)

    Google Scholar 

  9. Huson, D.H., Bryant, D.: Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2), 254–267 (2006)

    Article  Google Scholar 

  10. Huson, D.H., Kloepper, T., Lockhart, P.J., Steel, M.A.: Reconstruction of reticulate networks from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)

    Google Scholar 

  11. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006); Proceedings of the European Conference on Computational Biology (ECCB 2006)

    Article  Google Scholar 

  12. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Maximum likelihood of phylogenetic networks. Bioinformatics 22(21), 2604–2611 (2006)

    Article  Google Scholar 

  13. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Molecular Biology and Evolution 24(1), 324–337 (2007)

    Article  Google Scholar 

  14. Jin, G., Nakhleh, L., Snir, S., Tuller, T.: A new linear-time heuristic algorithm for computing the the parsimony score of phylogenetic networks: theoretical bounds and empirical performance. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 61–72. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kunin, V., Goldovsky, L., Darzentas, N., Ouzounis, C.A.: The net of life: reconstructing the microbial phylogenetic network. Genome Research 15, 954–959 (2005)

    Article  Google Scholar 

  16. Lerat, E., Daubin, V., Moran, N.A.: From gene trees to organismal phylogeny in prokaryotes: The case of the γ-proteobacteria. PLoS Biology 1(1), 1–9 (2003)

    Article  Google Scholar 

  17. MacLeod, D., Charlebois, R.L., Doolittle, F., Bapteste, E.: Deduction of probable events of lateral gene transfer through comparison of phylogenetic trees by recursive consolidation and rearrangement. BMC Evolutionary Biology 5 (2005)

    Google Scholar 

  18. Makarenkov, V.: T-REX: Reconstructing and visualizing phylogenetic trees and reticulation networks. econstructing and visualizing phylogenetic trees and reticulation networks 17(7), 664–668 (2001)

    Google Scholar 

  19. Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

    Article  Google Scholar 

  20. Nakamura, Y., Itoh, T., Matsuda, H., Gojobori, T.: Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics 36(7), 760–766 (2004)

    Article  Google Scholar 

  21. Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB 2005), pp. 93–102 (2005)

    Google Scholar 

  22. Nakhleh, L., Ruths, D., Wang, L.S.: RIATA-HGT: A fast and accurate heuristic for reconstrucing horizontal gene transfer. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 84–93. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species–theory and practice. In: Proc. 8th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB 2004), pp. 337–346 (2004)

    Google Scholar 

  24. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784), 299–304 (2000)

    Article  Google Scholar 

  25. Shimodaira, H., Hasegawa, M.: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116 (1999)

    Google Scholar 

  26. Suchard, M.A.: Stochastic models for horizontal gene transfer: taking a random walk through tree space. Genetics 170, 419–431 (2005)

    Article  Google Scholar 

  27. Than, C., Nakhleh, L.: SPR-based tree reconciliation: Non-binary trees and multiple solutions. In: Proceedings of the Sixth Asia Pacific Bioinformatics Conference, pp. 251–260 (2008)

    Google Scholar 

  28. Than, C., Ruths, D., Innan, H., Nakhleh, L.: Identifiability issues in phylogeny-based detection of horizontal gene transfer. In: Bourque, G., El-Mabrouk, N. (eds.) RECOMB-CG 2006. LNCS (LNBI), vol. 4205, pp. 215–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Than, C., Ruths, D., Innan, H., Nakhleh, L.: Confounding factors in HGT detection: Statistical error, coalescent effects, and multiple solutions. Journal of Computational Biology 14(4), 517–535 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Than, C., Jin, G., Nakhleh, L. (2008). Integrating Sequence and Topology for Efficient and Accurate Detection of Horizontal Gene Transfer. In: Nelson, C.E., Vialette, S. (eds) Comparative Genomics. RECOMB-CG 2008. Lecture Notes in Computer Science(), vol 5267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87989-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87989-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87988-6

  • Online ISBN: 978-3-540-87989-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics