Skip to main content

A New Linear-Time Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4463))

Included in the following conference series:

Abstract

Phylogenies play a major role in representing the interrelationships among biological entities. Many methods for reconstructing and studying such phylogenies have been proposed, almost all of which assume that the underlying history of a given set of species can be represented by a binary tree. Although many biological processes can be effectively modeled and summarized in this fashion, others cannot: recombination, hybrid speciation, and horizontal gene transfer result in networks, rather than trees, of relationships.

In a series of papers, we have extended the maximum parsimony (MP) criterion to phylogenetic networks, demonstrated its appropriateness, and established the intractability of the problem of scoring the parsimony of a phylogenetic network. In this work we show the hardness of approximation for the general case of the problem, devise a very fast (linear-time) heuristic algorithm for it, and implement it on simulated as well as biological data.

The authors appear in alphabetical order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafna, V., Bansal, V.: Improved Recombination Lower Bounds for Haplotype Data. In: Miyano, S., et al. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 569–584. Springer, Heidelberg (2005)

    Google Scholar 

  2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. on Discrete Mathematics 12, 289–297 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R.: One for the price of two: A unified approach for approximating covering problems. Algorithmica 27, 131–144 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics 25, 27–46 (1985)

    MathSciNet  Google Scholar 

  5. Bergthorsson, U., et al.: Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424, 197–201 (2003)

    Article  Google Scholar 

  6. Delwiche, C.F., Palmer, J.D.: Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol. Biol. Evol. 13(6) (1996)

    Google Scholar 

  7. Doolittle, W.F., et al.: How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Phil. Trans. R. Soc. Lond. B. Biol. Sci. 358, 39–57 (2003)

    Article  Google Scholar 

  8. Eisen, J.A.: Assessing evolutionary relationships among microbes from whole-genome analysis. Curr. Opin. Microbiol. 3, 475–480 (2000)

    Article  Google Scholar 

  9. Paulsen, I.T., et al.: Role of mobile DNA in the evolution of Vacomycin-resistant Enterococcus faecalis. Science 299(5615), 2071–2074 (2003)

    Article  Google Scholar 

  10. Fitch, W.: Toward defining the course of evolution: minimum change for a specified tree topology. Syst. Zool. 20, 406–416 (1971)

    Article  Google Scholar 

  11. Gusfield, D., Bansal, V.: A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters. In: Miyano, S., et al. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)

    Google Scholar 

  12. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology, pp. 347–356 (2004)

    Google Scholar 

  13. Hastad, J.: Some optimal inapproximability results. In: STOC97, pp. 1–10 (1997)

    Google Scholar 

  14. Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences 98, 185–200 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. Journal of Molecular Evolution 36, 396–405 (1993)

    Article  Google Scholar 

  16. Hochbaum, D.S.: Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston (1997)

    Google Scholar 

  17. Huson, D.H., et al.: Reconstruction of Reticulate Networks from Gene Trees. In: Miyano, S., et al. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)

    Google Scholar 

  18. Sung, W.-K., et al.: Constructing a Smallest Refining Galled Phylogenetic Network. In: Miyano, S., et al. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 265–280. Springer, Heidelberg (2005)

    Google Scholar 

  19. Jain, R., et al.: Horizontal gene transfer in microbial genome evolution. Theoretical Population Biology 61(4), 489–495 (2002)

    Article  Google Scholar 

  20. Jain, R., et al.: Horizontal gene transfer accelerates genome innovation and evolution. Molecular Biology and Evolution 20(10), 1598–1602 (2003)

    Article  Google Scholar 

  21. Jin, G., et al.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128 (2006)

    Article  Google Scholar 

  22. Jin, G., et al.: Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Molecular Biology and Evolution 24(1), 324–337 (2007)

    Article  Google Scholar 

  23. Jin, G., et al.: On approximating the parsimony score of phylogenetic networks. Under review (2007)

    Google Scholar 

  24. Judd, W.S., Olmstead, R.G.: A survey of tricolpate (eudicot) phylogenetic relationships. American Journal of Botany 91, 1627–1644 (2004)

    Article  Google Scholar 

  25. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120 (1980)

    Article  Google Scholar 

  26. Linder, C.R., et al.: Network (reticulate) evolution: biology, models, and algorithms. In: The Ninth Pacific Symposium on Biocomputing (PSB), A tutorial (2004)

    Google Scholar 

  27. Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network reconstruction approaches. Applied Mycology and Biotechnology (Genes, Genomics and Bioinformatics) 6, To appear (2005)

    Google Scholar 

  28. Matte-Tailliez, O., et al.: Archaeal phylogeny based on ribosomal proteins. Molecular Biology and Evolution 19(5), 631–639 (2002)

    Google Scholar 

  29. Michelangeli, F.A., Davis, J.I., Stevenson, D.W.: Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from mitochondrial and plastid genomes. American Journal of Botany 90, 93–106 (2003)

    Article  Google Scholar 

  30. Moret, B.M.E., et al.: Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1(1), 13–23 (2004)

    Article  Google Scholar 

  31. Nakhleh, L., et al.: Reconstructing phylogenetic networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference (CSB2005), August 2005, pp. 93–102 (2005)

    Google Scholar 

  32. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species: theory and practice. In: Proceedings of the Eighth Annual International Conference on Computational Molecular Biology, pp. 337–346 (2004)

    Google Scholar 

  33. Nguyen, C.T., et al.: Reconstructing recombination network from sequence data: The small parsimony problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) (2006)

    Google Scholar 

  34. Rambaut, A., Grassly, N.C.: Seq-gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Comp. Appl. Biosci. 13, 235–238 (1997)

    Google Scholar 

  35. Sanderson, M.: r8s software package. Available from http://loco.ucdavis.edu/r8s/r8s.html

  36. Sankoff, D.: Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics 28, 35–42 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ion Măndoiu Alexander Zelikovsky

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, G., Nakhleh, L., Snir, S., Tuller, T. (2007). A New Linear-Time Heuristic Algorithm for Computing the Parsimony Score of Phylogenetic Networks: Theoretical Bounds and Empirical Performance. In: Măndoiu, I., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2007. Lecture Notes in Computer Science(), vol 4463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72031-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72031-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72030-0

  • Online ISBN: 978-3-540-72031-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics