Towards an Illumination-Based 3D Active Appearance Model for Fast Face Alignment

  • Salvador E. Ayala-Raggi
  • Leopoldo Altamirano-Robles
  • Janeth Cruz-Enriquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


A novel 3D active appearance model invariant to illumination is presented. 3D-IAAM (Tridimensional Illumination-based Active Appearance Model) is capable of representing human faces with any identity, pose and illumination condition and it was tested for face synthesis by creating faces with multiple identities, poses and illuminations. We also propose an illumination-invariant 3D face alignment algorithm based on our model which is suitable for fast estimation of 3D pose and structure of faces. In this work, we model the illumination to do the alignment, instead of eliminating its effects, with the possibility of obtaining additional information about the original lighting at the end of the fitting process.


face alignment active appearance models pose detection 


  1. 1.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3D Faces. In: Siggraph 1999, pp. 187–194 (1999)Google Scholar
  2. 2.
    Blanz, V., Vetter, T.: Face Recognition Based on Fitting a 3D Morphable Model. IEEE Transaction Pattern Analysis and Machine Intelligence 25, 1063–1074 (2003)CrossRefGoogle Scholar
  3. 3.
    Romdhani, S., Ho, J., Vetter, T., Kriegman, D.J.: Face Recognition Using 3-D Models: Pose and Illumination. Proceedings of the IEEE 94, 1977–1999 (2006)CrossRefGoogle Scholar
  4. 4.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)CrossRefGoogle Scholar
  6. 6.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-Time Combined 2D+3D Active Appearance Models. In: CVPR 2004, vol. 2, pp. 535–542 (2004)Google Scholar
  7. 7.
    Matthews, I., Baker, S.: Active Appearance Models Revisited. International Journal on Computer Vision 60, 135–164 (2004)CrossRefGoogle Scholar
  8. 8.
    Huang, Y., Lin, S., Li, S.Z., Lu, H., Shum, H.Y.: Face Alignment Under Variable Illumination. In: Proceedings of the FGR 2004, pp. 85–90 (2004)Google Scholar
  9. 9.
    Le Gallou, S., Breton, G., García, C., Séguier, R.: Distance Maps: A Robust Illumination Preprocessing for Active Appearance Models. In: VISAPP 2006, vol. 2, pp. 35–40 (2006)Google Scholar
  10. 10.
    Kahraman, F., Gökmen, M., Darkner, S., Larsen, R.: An Active Illumination and Appearance (AIA) Model for Face Alignment. In: CVPR 2007 (2007)Google Scholar
  11. 11.
    Dornaika, F., Ahlberg, J.: Fast And Reliable Active Appearance Model Search For 3d Face Tracking. In: Proceedings of Mirage 2003, pp. 10–11. INRIA Rocquencourt, France (2003)Google Scholar
  12. 12.
    Sattar, A., Aidarous, Y., Le Gallou, S., Séguier, R.: Face Alignment by 2.5D Active Appearance Model Optimized by Simplex. In: ICVS 2007, Bielefeld University, Germany (2007)Google Scholar
  13. 13.
    Basri, R., Jacobs, D.W.: Lambertian Reflectance and Linear Subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 218–233 (2003)CrossRefGoogle Scholar
  14. 14.
    Lee, K.C., Ho, J., Kriegman, D.J.: Nine Points of Light: Acquiring Subspaces for Face Recognition under Variable Lighting. In: CVPR 2001, pp. 519–526 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Salvador E. Ayala-Raggi
    • 1
  • Leopoldo Altamirano-Robles
    • 1
  • Janeth Cruz-Enriquez
    • 1
  1. 1.Instituto Nacional de Astrofísica, Óptica y Electrónica, Coordinación de Ciencias ComputacionalesSta Ma. Tonantzintla. Pue.México

Personalised recommendations