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Abstract. A novel 3D active appearance model invariant to illumina-
tion is presented. 3D-IAAM (Tridimensional Illumination-based Active
Appearance Model) is capable of representing human faces with any
identity, pose and illumination condition and it was tested for face syn-
thesis by creating faces with multiple identities, poses and illuminations.
We also propose an illumination-invariant 3D face alignment algorithm
based on our model which is suitable for fast estimation of 3D pose and
structure of faces. In this work, we model the illumination to do the
alignment, instead of eliminating its effects, with the possibility of ob-
taining additional information about the original lighting at the end of
the fitting process.
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1 Introduction

Developing fast 3D face alignment methods capable to work in real time despite
the kind of lighting is a challenging problem. 3D Face alignment on 2D images
has been solved with Morphable Models [1],[2],[3], however, although the quality
of alignment is fine, the computational cost and processing time are high, and
often it is necessary to use some anchor points manually located on the novel
face to begin the fit. Active Appearance Models [4],[5], (AAMs) are generative
models intended for fast 2D face alignment often required in real time applica-
tions. Identity can be estimated by fitting AAMs. Nevertheless, AAMs are 2D
and sensitive to illumination, particulary when the lighting during the testing
phase is different from illumination during the training phase. We propose an
extension of the AAMs called 3D − IAAM (Tridimensional Illumination-based
Active Appearance Model) for fast 3D face alignment which estimates the 3D
pose and structure of faces despite its illumination. Our model is built by 3D
shape, albedo, pose and illumination parameters. To model illumination we use
harmonic reflectances obtained from the surface normals and albedos maps of
faces. We developed a face synthesizer able to create realistic faces with different
poses, identities and lightings and an iterative face alignment algorithm based
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on the fitting method proposed in [5], but using an adaptive to illumination
gradient matrix instead of a constant gradient matrix.

2 Related Work

In [6], it is proposed a technique for obtaining 3D structure from motion using
AAMs which are fitted with an algorithm originally proposed in [7]. This cited
work does not include illumination. In [8] and [9] authors propose methods for
2D face alignment under different illumination conditions by preprocessing the
image to eliminate the effect of lighting before applying traditional AAM fitting.
Kahraman et al [10] propose an approach which integrates the classical AAM
model (shape and texture) with an statistical illumination model. Their model,
called AIA (Active Illumination Appearance model) is 2D and consists of two
linear subspaces: one for illumination, and another for identity. In [11], it is
proposed a 3D algorithm for face tracking in video sequences based on AAM
models which uses a generic 3D human shape frame called Candide developed at
Linköping University and does not include the problem of illumination. In [12],
Sattar et al. propose a fast face alignment method based on a 2.5D AAM model
optimized by Simplex. This technique does not consider illumination. On the
other hand, to model lighting, Basri et al. [13] showed that any reflectance over
a face can be approximated in 97.96% with a linear combination of 9 spherical
harmonic reflectances, obtained from the surface normals and the albedos of the
face surface. In summary, AAM models have been used for fast 2D face alignment
under variable conditions of lighting but not for doing 3D pose estimation at
the same time. Other authors have proposed extensions of AAMs to estimate
3D pose and structure but do not include illumination. We propose a fast and
invariant to illumination 3D face alignment method based on AAMs, able to
estimate 3D pose and structure.

3 Modeling Lighting

In [13], Basri et al show that any illumination over a face can be represented by
a linear combination of n basis images

I = BHT L (1)

where L is a vector containing n arbitrary parameters and B is a matrix which
columns are nine spherical harmonic images built by using an albedos map and a
surface normals map. Columns in H contain samples of the harmonic functions,
whereas its rows contain the spherical harmonics transform of delta functions
(punctual light sources). To obtain a good approximation we should use a large
set of n punctual lights uniformly distributed around the sphere. However, in
[14], Lee et al, showed that it is possible to achieve good results in face recog-
nition using only n = 9 light punctual sources strategically distributed. This
distribution can approximate any reflectance on a face. So, we can build a ma-
trix H using nine deltas in order to project them into the spherical harmonics
space.
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4 Face Synthesis Using a 3D AAM Model Based on
Illumination (3D-IAAM)

To build an statistical 3D shape model, we place 3D landmarks over the surface
of faces with different identities. We define a shape model as the set of these
landmarks. In order to obtain principal modes of shape variation (due to iden-
tity), we align the shape models and apply PCA to them, so we can generate
an arbitrary model with

s = s̄ + Qsc (2)

where s̄ is the mean shape model and Qs is a matrix which contains the eigen-
shapes and c is a vector with arbitrary shape parameters. Similarly, we apply
PCA to the set of shape-normalized 2D albedos maps. Before applying PCA,
the albedos map of each training face must be shape-normalized (using the bidi-
mensional projection of the mean shape frame). A triangulation is designed to
warp original images to the mean shape frame. Finally, any shape-normalized
albedos image can be generated with

λ = λ̄ + Qλa (3)

where λ̄ is the mean albedos image, Qλ is a matrix which contains principal
albedo variation modes and a is a vector of arbitrary parameters. Using the
previous expression (eq. 3), it is possible to synthesize an arbitrary albedo and
then warp it to the 2D projection of an arbitrary shape generated with expression
2. Now, we have a new face with an arbitrary albedo and shape. This face is
not illuminated yet. In the same process of warping albedos to the new shape,
it is also possible to warp the shape-normalized mean map of surface normals.
Now we have an albedos image and a surface normals map shaped over the new
shape. Using these maps (albedos and normals), we can create 9 basis reflectance
images. Any illumination can be generated by a linear combination of these basis
images using eq. 1. To give a pose to the model, we use the 3D landmarks of the
new generated 3D shape. By applying a rigid body transformation (T,R,s) to
these landmarks it is possible to give any pose and size to the created face. Finally
we warp the frontal illuminated face to the 2D projection of the transformed 3D
shape. See Fig. 1.

Fig. 1. Face synthesis using the 3D-IAAM direct model
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5 Face Alignment Using 3D-IAAM Model

We can consider our face synthesizer as a transformation of the mean face which
can result in an arbitrary face, f = T3D−IAAM (̄f), where f̄ is the mean face, and
f is the resulting synthetic face with arbitrary shape, albedo, illumination and
pose. Following the same notation, we should use an inverse transformation for
the alignment process:

r = T−1
3D−IAAM (I) − f̄ (4)

We propose an extension of the iterative fitting algorithm in [5]. Our technique
uses the 3D − IAAM inverse model in each iteration. During the fit, according
to the parameters of the inverse model, the pixels inside a region in the image
are sampled and transformed. So, the residuals image computed with (4) is a
function of the model parameters p. The first order Taylor expansion of (4) gives
r(p + δp) = r(p) + δr

δpδp, here, pT = (TT |RT |sT |cT |aT |LT ), and the ij − th

element of the matrix δr
δp is δri

δpj
. We wish to choose δp such that it minimize

|r(p + δp)|2. Equating r(p + δp) to zero leads to the solution

δp = −Rr(p) where R = (
δrT

δp
δr
δp

)−1 δrT

δp
(5)

δr
δp is actually a gradient matrix changing in each iteration. Recalculating it at

every step is expensive. So, we assume it to be constant since it is been computed
in a normalized reference frame. To compute a constant gradient matrix, we have
to displace each parameter from its mean value and create synthetic images.
Then, we calculate a weighted average of the residuals images for each displaced
parameter as is shown in [5].

5.1 Inverse 3D-IAAM Model

In [13], it is shown that the albedos map really is a constant matrix which
multiplies component by component to the harmonic reflectances matrix

Iilluminated face = BHT L = (λ. ∗ R)HT L (6)

we use “.∗” and “./” for denoting component to component product and compo-
nent to component division of matrixes (Hadamard product and division) respec-
tively. This notation is commonly used in MATLAB. The normalization process
applied to a region of the image to be compared with the mean model is:

1. Using the rigid body transformation parameters (T,R, s) and the shape
parameters c, we sample a region in the image, and warp this region to the
mean shape frame. We call this image as Ishape aligned. Thus, we can estimate
the albedos map which correspond to this image by using eq. 6

λ̂ = (Ishape aligned)./RHT L (7)
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2. Using this estimated albedos map, we can derive an approximated mean
albedos map λ̄ ≈ λ̂ − Qλa

3. Finally, the image has been normalized in shape, illumination, albedo and
pose according to the model parameters, Ialigned = (λ̄). ∗RHT Lmean where
Lmean is a predefined vector containing mean illumination parameters, and
the expression to minimize will be r = Ialigned − f̄

The inverse model used during alignment is shown in Fig. 2.

Fig. 2. Inverse 3D-IAAM model used for face alignment

5.2 Iterative Fitting Algorithm

In [5], the fitting process consists of computing a constant gradient matrix (Jaco-
bian matrix) which is used during the fitting process. However when the lighting
of the face to fit is very different from the lighting used in the training phase,
the alignment fails. Therefore, we propose to use a gradient matrix adapted
to the rough illumination estimated in the first iteration. This matrix can be
quickly computed during the alignment process using the first estimated illumi-
nation parameters obtained from a precomputed constant gradient matrix. We
can compute this gradient matrix by displacing each parameter (we use 33) in
a suitable increment pi + Δpi. We have to obtain 9 basis images without albedo
information: Bpi+Δpi , here i = 1, .., 33. Increment Δpi should be both positive
and negative, thus, we will have 66 matrixes “B”. In a similar way, by displac-
ing each parameter with a suitable increment pi + Δpi (positive and negative)
we obtain 33 albedo images for positive increments and 33 albedo images for
negative increments. These albedo images do not have information about light-
ing: λp1+Δp1 , .., λp33+Δp33 and λp1−Δp1 , .., λp33−Δp33 . These 66 matrixes and 66
albedo images are created during the training phase (off-line). During the align-
ment phase we can create a gradient matrix on-line according to a set of pa-
rameters of illumination L, δr

δp = [ δr1
δp1

. . . δr33
δp33

] where δri

δpi
= [ δri

δpi

(+)
+ δri

δpi

(−)
]× 1

2
and

δri

δpi

(+)

=
Bpi+ΔpiL. ∗ λpi+Δpi − BpiL. ∗ λpi

Δpi
(8)

δri

δpi

(−)

=
Bpi−ΔpiL. ∗ λpi−Δpi − BpiL. ∗ λpi

−Δpi
(9)
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We obtain a rough estimate of the illumination parameters L in the first
iteration by using a precalculated constant gradient matrix. Then, we restart
the iterations using this new created matrix (built from L) during all the fitting
process.

6 Experimental Results

We used Yale database which contains ten different identities with different
poses and illuminations. To train a 3D shape model, we placed 3D landmarks
over ten 3D face surfaces. We used 11 different images illuminated by different
light sources each one. Solving a minimum square problem we estimated surface
normals and albedos maps. From surface normals maps we reconstructed the
surface of each face. We manually placed 50 landmarks over each surface. Our
model uses 33 parameters: 6 for pose, 9 for 3D shape, 9 for illumination, and
9 for albedo. We validated our model qualitatively by synthesizing each one of
the training faces in different poses and different lightings. Fig. 3 shows nine
synthetic faces each one illuminated by a basis light source.

Fig. 3. Identity number 1 (from Yale database) illuminated by each one of the nine
basis light sources

To evaluate face alignment we created two sets of synthetic faces: 13 faces
illuminated on the left side, and 13 faces illuminated on the right side. All these
with the same identity and different profile angles from −0.3 radians to 0.3 radi-
ans of rotation in y-axis. For measuring visual quality of the alignment we used
the mean square error (MSE) as a distance measurement. Fig. 4(a) shows three
from the thirteen alignments for faces with left illumination and Fig. 4(b) shows
three from the thirteen alignments for faces with right illumination. Original
synthetic faces are shown in the first row of Figs. 4(a) and 4(b), whereas aligned
faces are shown in the second row. Figs. 4(c) and 4(d) show the estimated pose
in the y-axis (profile angle) for left illuminated faces and right illuminated faces
respectively. Fig. 5 shows results for a similar evaluation now using a fitting
algorithm based on a light adaptive gradient matrix. These last results show
an improvement in both MSE and profile pose estimation. To show that pose
estimation is invariant to illumination and identity, we created 5 poses, each one
with a different identity and illumination. Identities were selected randomly: 1,
3, 7, 8, and 10 from the 10 identities contained in the Yale database. Illumina-
tions were randomly selected too from the basis illumination set: 1,3,4,7 and 8,
see Fig. 3. Results are shown in Fig. 6.
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Fig. 4. (a) and (b): Face alignment using a constant gradient matrix. (c) and (d):
Estimated poses using the fitting algorithm based on a constant gradient matrix.

Fig. 5. (a) and (b): Face alignment using a light adaptive gradient matrix. (c) and (d):
Estimated poses using a fitting algorithm based on a light adaptive gradient matrix.

Fig. 6. Left: 5 aligned faces with different illuminations and poses using a light adaptive
gradient matrix. Right: estimated poses.
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7 Discussion

We estimated 3D poses of faces from 2D images by fitting a parametric 3D active
appearance model based on illumination. We have to highlight three contribu-
tions here. The first one, is a direct 3D− IAAM model based on lighting, which
is able to synthesize faces with multiple 3D spatial poses, 3D shapes, albedos
and any possible illumination. The second one is an inverse 3D − IAAM model
(used in our face alignment algorithm), which performs a whole normalization
(pose, shape, albedo and lighting) of a region in the image to align. Finally, the
third one is a fitting algorithm which improves the quality of alignment by cre-
ating a gradient matrix which is adaptive to lighting. Our model could be used
for face recognition under arbitrary pose and illumination and it would be able
of synthesizing new poses and new illuminations of an aligned face.
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Appearance Model Optimized by Simplex. In: ICVS 2007, Bielefeld University,
Germany (2007)

13. Basri, R., Jacobs, D.W.: Lambertian Reflectance and Linear Subspaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25, 218–233 (2003)

14. Lee, K.C., Ho, J., Kriegman, D.J.: Nine Points of Light: Acquiring Subspaces for
Face Recognition under Variable Lighting. In: CVPR 2001, pp. 519–526 (2001)


	Towards an Illumination-Based 3D Active Appearance Model for Fast Face Alignment
	Introduction
	Related Work
	Modeling Lighting
	Face Synthesis Using a 3D AAM Model Based on Illumination (3D-IAAM)
	Face Alignment Using 3D-IAAM Model
	Inverse 3D-IAAM Model
	Iterative Fitting Algorithm

	Experimental Results
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




