Skip to main content

Abstract

Zinc oxide (ZnO) is a highly versatile material with unique combinations of optical, electronic and piezoelectric properties which can be controlled by the addition of Fe or In. Undoped ZnO crystallizes in the non-centrosymmetric wurtzite structure with alternating (0002) layers of tetrahedrally coordinated O2− and Zn2+ stacked along the c axis. In the present investigation the distribution of dopants in ZnO is studied by a combined quantitative EELS/EDS analysis. In ZnO doped with Fe3+ or In3+ a characteristic inversion domain structure with planar inversion domain boundaries (IDBs) is observed on (0001) planes (basal IDBs) and \( \{ 2 \bar 1 \bar 15\} \) planes (pyramidal IDBs), respectively (Fig.1). The number of IDBs is directly correlated to the local dopant concentration; quasi-periodic structures are observed at dopant concentrations ≥ 5 at.% of cations (Fig.2). The (0002) lattice planes are well resolved, albeit severely distorted in the vicinity of IDBs in Fe-ZnO. Elemental mapping in EFTEM indicates that dopants are essentially located within the IDBs (Fig.3), however, it does not allow for a quantitative assessment of dopant concentrations [1]. EEL spectra were acquired with high spatial resolution in diffraction/nanoprobe mode. Regions analyzed by EELS measurements are indicated in Fig.3a (open circles). Quantitative measurements, corrected for O-K EXELFS oscillations [2], yielded a solid-solubility < 0.4 at.% Fe in unaffected ZnO domains (ZSS), whereas Fe is depleted in inverted domains (Z0). The Fe content in single basal IDBs was measured by EELS using the variable beam diameter method [1], yielding an effective boundary thickness δ ≈ 0.27 nm, corresponding to one closepacked monolayer of Fe3+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Köster-Scherger, H. Schmid et al., J. Am. Ceram. Soc., 90 (2007) 3984.

    Google Scholar 

  2. H. Schmid and W. Mader, Proc. IMC 16, Sapporo/Japan (2006) 829.

    Google Scholar 

  3. H. Schmid and W. Mader, Micron, 37 (2006) 426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmid, H., Mader, W. (2008). Distribution of Fe and In dopants in ZnO: A combined EELS/EDS analysis. In: Luysberg, M., Tillmann, K., Weirich, T. (eds) EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85156-1_216

Download citation

Publish with us

Policies and ethics