Skip to main content

Image-Guided Neurosurgery

  • Chapter
Neurosurgery

Part of the book series: European Manual of Medicine ((EUROMANUAL))

Abstract

The introduction of computed tomography (CT) into clinical use renewed interest in stereotactic neurosurgery [16]. With CT, intracerebral lesions are directly visible, and the images are easy to use with a stereotactic coordinate system. After the introduction of magnetic resonance imaging MRI in the 1980s, these data sets were also incorporated into stereotactic techniques and could be used for stereotactic planning and surgery [57, 58]. Stereotacticguided techniques were developed to target pathological lesions within the brain. Technically, a target and an entry point are selected just like in stereotactic biopsy. The entry point marks the craniotomy site. Commonly, a catheter is inserted and advanced to the target point, and preparation is performed along this predefined trajectory until the target point and therefore the tumor is reached. Kelly developed a technique of volumetric stereotactic surgery: the compass system. In contrast to the point-in-space stereotactic technique, the volumetric technique provides calculation of the tumor volume and therefore of the borders of a lesion. A computer system is required for this complex mathematical calculation [17, 18, 38, 39, 40].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Suggested Reading

  1. Albayrak B, Samdani AF, Black PM (2004) Intra-operative magnetic resonance imaging in neurosurgery. Acta Neurochir (Wien) 146:543–557

    Article  CAS  Google Scholar 

  2. Auer LM, van Velthoven V (1990) Intraoperative ultrasound (US) imaging. Comparison of pathomorphological findings in US and CT. Acta Neurochir (Wien) 104:84–95

    Article  CAS  Google Scholar 

  3. Barnett GH, Kormos DW, Steiner PC, Weisenberger J (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuroimaging. Neurosurgery 33:674–678

    Article  CAS  PubMed  Google Scholar 

  4. Black PM, Moriaty T, Alexander E III, Stieg P, Woodard E, Gleason PL, Martin CH, Kikinis R, Schwartz RB, Jolesz FA (1997) Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery 41:831–845

    Article  CAS  PubMed  Google Scholar 

  5. Black PML, Alexander E, Martin C, Moriaty T, Nabavi A, Wong TZ, Schwartz RB, Jolesz F (1999) Craniotomy for tumor treatment in an intraoperative magnetic resonance imaging unit. Neurosurgery 45:423–433

    Article  CAS  PubMed  Google Scholar 

  6. Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter HP (2001) Multimodal direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note. Neurosurgery 48:1178–1182

    Article  CAS  PubMed  Google Scholar 

  7. Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP (2002) Cranial neuronavigation with direct integration of 11C methionine positron emission tomography (PET) data – results of a pilot study in 32 surgical cases. Acta Neurochir 144:777–782

    Article  CAS  Google Scholar 

  8. Buchfelder M, Ganslandt O, Fahlbusch R, Nimsky C (2000) Intraoperative magnetic resonance imaging in epilepsy surgery. J Magn Reson Imaging 12(4):547–555

    Article  CAS  PubMed  Google Scholar 

  9. Buchfelder M, Fahlbusch R, Ganslandt O, Stefan H, Nimsky C (2002) Use of intraoperative magnetic resonance imaging in tailored temporal lobe surgeries for epilepsy. Epilepsia 43(8):864–873

    Article  PubMed  Google Scholar 

  10. Butler WE, Piaggio CM, Constantinou C, Niklason L, Gonzales RG, Cosgrove GR, Zervas NT (1998) A mobile computed tomographic scanner with intraoperative and intensive care unit applications. Neurosurgery 42:1304–1311

    Article  CAS  PubMed  Google Scholar 

  11. Enchev Y, Bozinov O, Miller D, Tirakotai W, Heinze S, Benes L, Bertalanffy H, Sure U (2006) Image-guided ultrasonography for recurrent cystic gliomas. Acta Neurochir (Wien) 148:1053–1063

    Article  CAS  Google Scholar 

  12. Engle DJ, Lunsford LD (1987) Brain tumor resection guided by intraoperative computed tomography. J Neuro-Oncol 4:361–370

    Article  CAS  Google Scholar 

  13. Fahlbusch R, Thapar K (1999) New developments in pituitary surgical techniques. Baillieres Best Pract Res Clin Endocrinol Metab 13(3):471–484

    Article  CAS  PubMed  Google Scholar 

  14. Ganser KA, Dickhaus H, Staubert A, Bonsanto MM, Wirtz CR, Tronnier VM, Kunze (1997) Quantification on brain shift effects in MRI images. Biomed Tech (Berl) Suppl 42:247–248

    Article  Google Scholar 

  15. Germano IM (1995) The Neurostation system for image-guide, frameless stereotaxy. Neurosurgery 37:348–351

    Article  Google Scholar 

  16. Gildenberg PL (1987) Whatever happened to stereotactic surgery? Neurosurgery 20:983–987

    Article  CAS  PubMed  Google Scholar 

  17. Goerss SJ, Kelly PJ, Kall BA, Alder GJ (1982) A computed tomographic stereotactic adaptation system. Neurosurgery 10:375–379

    Article  CAS  PubMed  Google Scholar 

  18. Goerss SJ, Kelly PJ, Kall BA (1987) An automated stereotactic system. Appl Neurophysiol 50:100–106

    CAS  PubMed  Google Scholar 

  19. Gong J, Mohr G, Vezina JL (2007) Endoscopic pituitary surgery with and without image guidance: an experimental comparison. Surg Neurol 67:572–578

    Article  PubMed  Google Scholar 

  20. Gronningsaeter A, Lie T, Kleven A, Morland T, Langö T, Unsgard G, Myhre HO, Marvik R (2000) Initial experience with stereoscopic visualization of three-dimensional ultrasound data in surgery. Surg Endosc 14:1074–1078

    Article  CAS  PubMed  Google Scholar 

  21. Grunert P, Müller-Forell W, Darabi K, Reisch R, Busert C, Hopf N, Perneczky A (1998) Basic principles and clinical applications of neuronavigation and intraoperative computed tomography. Comput Aided Surg 3(4):166–173

    Article  CAS  PubMed  Google Scholar 

  22. Gumprecht H, Lumenta CB (1998) The operating microscope guided by a neuronavigation system: a technical note. Minim Invasive Neurosurg 41:141–143

    Article  CAS  PubMed  Google Scholar 

  23. Gumprecht H, Lumenta CB (2003) Intraoperative imaging using a mobile computed tomography scanner. Minim Invasive Neurosurg 46:1–6

    Article  Google Scholar 

  24. Gumprecht H, Widenka D, Lumenta CB (1999) The BrainLAB VectorVision Neuronavigation System: technique and experiences in 131 cases. Neurosurgery 44:97–105

    Article  CAS  PubMed  Google Scholar 

  25. Gumprecht H, Elbel GK, Auer DP, Lumenta CB (2002) Neuronavigation and functional MRI for surgery in patients with lesion in eloquent brain areas. Minim Invas Neurosurg 45:151–153

    Article  CAS  Google Scholar 

  26. Gumprecht H, Grosu AL, Souvatsoglou M, Dzewas B, Weber WA, Lumenta CB (2007) 11C-Methionine positron emission tomography for preoperative evaluation of suggestive low-grade gliomas. Zentralbl Neurochir 68:19–23

    Article  CAS  PubMed  Google Scholar 

  27. Gunnarsson T, Theodorsson A, Karlsson P, Fridriksson St, Boström S, Persliden J, Johansson I, Hillman J (2000) Mobile computerized tomography scanning in the neurosurgery intensive care unit: increase in patient safety and reduction of staff workload. J Neurosurg 93:432–436

    Article  CAS  PubMed  Google Scholar 

  28. Guthrie BL, Adler JR Jr (1991) Frameless stereotaxy: computer interactive neurosurgery. Perspect Neurol Surg 2:1–22

    Google Scholar 

  29. Hadani M, Spiegelman R, Feldman Z et al (2001) Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery 48:799–809

    Article  CAS  PubMed  Google Scholar 

  30. Hall WA, Liu H, Maxwell RE, Truwit CL (2003) Influence of 1.5 tesla intraoperative MR imaging on surgical decision making. Acta Neurochir (Wien) Suppl 85:29–37

    Google Scholar 

  31. Hammoud MA, Ligon BL, El Souki R, Shi WM, Schomer DF, Sawaya R (1996) Use of intraoperative ultrasound for localizing tumors and determining the extent of resection: a comparative study with magnetic resonance imaging. J Neurosurg 84:737–741

    Article  CAS  PubMed  Google Scholar 

  32. Hata N, Nabavi A, Wells WM III, Warfield SK, Kikinis R, Black PM, Jolesz FA (2000) Three-dimensional optical flow method for measurement of volumetric brain deformation from intraoperative MR images. J Comput Assist Tomogr 24:531–538

    Article  CAS  PubMed  Google Scholar 

  33. Jödicke A, Deinsberger W, Erbe H, Kriete A, Böker DK (1998) Intraoperative three-dimensional ultrasonography: an approach to register brain shift using multidimensional image processing. Minim Invas Neurosurg 41:13–18

    Article  Google Scholar 

  34. Jödicke A, Springer T, Böker DK (2004) Real-time integration of ultrasound into neuronavigation: technical accuracy using a light-emitting-diode-based navigation system. Acta Neurochir (Wien) 146:1211–1220

    Article  Google Scholar 

  35. Jolesz FA, Blumenfeld SM (1994) Interventional use of magnetic resonance imaging. Magn Reson Q 10(2):85–96

    CAS  PubMed  Google Scholar 

  36. Kaibara T, Myles ST, Lee MA, Sutherland GR (2002) Optimizing epilepsy surgery with intraoperative MR imaging. Epilepsia 43(4):425–429

    Article  PubMed  Google Scholar 

  37. Kanner AA, Vogelbaum MA, Mayberg MR, Weisenberger JP, Barnett GH (2002) Intracranial navigation by using low-field intraoperative magnetic resonance imaging: preliminary experience. J Neurosurg 97:1115–1124

    Article  PubMed  Google Scholar 

  38. Kelly PJ (1991) Tumor stereotaxis. Saunders, Philadelphia, pp 88–121

    Google Scholar 

  39. Kelly PJ (1993) Computed tomography and histological limits in glial neoplasm: tumor types and selection for volumetric resection. Surg Neurol 39:458–465

    Article  CAS  PubMed  Google Scholar 

  40. Kelly PJ, Kall BA, Goerss SJ (1987) Computer-interactive stereotactic resection of deep-seated and centrally located intraaxial brain lesions. Appl Neurophysiol 50:107–113

    CAS  PubMed  Google Scholar 

  41. Lindseth F, Kaspersen JH, Ommedal S, Lango T, Bang J, Hokland J, Unsgaard G, Hernes TA (2003) Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 8:49–69

    Article  PubMed  Google Scholar 

  42. Lunsford LD (1982) A dedicated CT system for the stereotactic operating room. Appl Neurophysiol 45:374–378

    CAS  PubMed  Google Scholar 

  43. Lunsford LD, Parrish R, Albright L (1984) Intraoperative imaging with a therapeutic computed tomographic scanner. Neurosurgery 15:559–561

    Article  CAS  PubMed  Google Scholar 

  44. Martin AJ, Hall WA, Liu H, Pozza CH, Michel E, Casey SO, Maxwell RE, Truwit CL (2000) Brain tumor resection: intraoperative monitoring with high field strength MR imaging: initial results. Radiology 215(1):221–228

    CAS  PubMed  Google Scholar 

  45. Martin CH, Schwartz R, Jolesz F, Black PM (1999) Transsphenoidal resection of pituitary adenomas in an intraoperative MRI unit. Pituitary 2(2):155–162

    Article  CAS  PubMed  Google Scholar 

  46. Mascott CR , Summers LE (2007) Image fusion of fluid-attenuated inversion recovery magnetic resonance imaging sequences for surgical image guidance. Surg Neurol 67:589–603

    Article  PubMed  Google Scholar 

  47. Matula C, Rössler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3(4):174–182

    Article  CAS  PubMed  Google Scholar 

  48. Mikuni N, Okada T, Enatsu R, Miki Y, Hanakawa T, Urayama S, Kikuta K, Takahashi JA, Nozaki K, Fukuyama H, Hashimoto N (2007) Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. J Neurosurg 106:593–598

    Article  PubMed  Google Scholar 

  49. Mösges R, Schlöndorff G (1988) Anew imaging method for intraoperative therapy control in skull base surgery. Neurosurg Rev 11:245–247

    Article  PubMed  Google Scholar 

  50. Nabavi A, Black PM, Gering DT, Westin CF, Metha V, Pergolizzi RS Jr, Ferrant M, Warfield SK, Hata N, Schwarzt RB, Wells WM, Kikinis R, Jolesz FA (2001) Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48:787–797

    Article  CAS  PubMed  Google Scholar 

  51. Nagelhus TA, Ommedal S, Lie T, Lindseth F, Lango T, Unsgaard G (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image-guided surgery approaches. Minim Invas Neurosurg 46:129–137

    Article  Google Scholar 

  52. Nimsky C, Gansladt O, Cerny S, Hastreiter P, Greiner G, Fahlbusch R (2000) Quantification of, visualization of, and compensation for brain shift using intraoperative magnetic resonance imaging. Neurosurgery 47:1070–1079

    Article  CAS  PubMed  Google Scholar 

  53. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:292–303

    Article  Google Scholar 

  54. Okudera H, Kobayashi S, Sugita K (1991) Mobile CT scanner gantry for use in the operating room: technical note. AJNR 12:131–132

    CAS  PubMed  Google Scholar 

  55. Okudera H, Kobayashi S, Kyoshima K, Gibo H, Takemae T, Sugita K (1991) Development of the operating computerized tomographic scanner system for neurosurgery. Acta Neurochir (Wien) 111:61–63

    Article  CAS  Google Scholar 

  56. Okudera H, Takemae T, Kobayashi S (1993) Intraoperative computed tomographic scanning during transphenoidal surgery: technical note. Neurosurgery 32:1041–1043

    Article  CAS  PubMed  Google Scholar 

  57. Olivier A, Peters TM, Clark JA, Marchand E, Mawko G, Bertrand G, Vanier M, Ethier R, Tyler J, de Lotbiniere A (1987) Integration of digital angiography, magnetic resonance, x-ray computed tomography and positron emission tomography in stereotaxy. Rev Electroencephalogr Neurophysiol Clin 17:25–43

    Article  CAS  PubMed  Google Scholar 

  58. Peters TM, Clark J, Pike B, Drangova M, Olivier A (1987) Stereotactic surgical planning with magnetic resonance imaging, digital subtraction angiography and computed tomography. Appl Neurophysiol 50:33–38

    CAS  PubMed  Google Scholar 

  59. Picht T, Wachter D, Mularski S, Kuehn B, Brock M, Kombos T, Suess O (2008) Functional magnetic resonance imaging and cortical mapping in motor cortex tumor surgery: complementary methods. Zentralbl Neurochir 69:1–6

    Article  CAS  PubMed  Google Scholar 

  60. Reinhardt HF, Zweifel HJ (1990) Interactive sonar-operated device for stereotactic and open surgery. In: Gildenberg PL (ed) Stereotactic and functional neurosurgery. S. Karger, Basel, pp 393–397

    Google Scholar 

  61. Reithmeier T, Krammer M, Gumprecht H, Gerstner W, Lumenta CB (2003) Neuronavigation combined with electrophysiological monitoring for surgery of lesions in eloquent brain areas in 42 cases: a retrospective comparison of the neurological outcome and the quality of resection with a control group with similar lesions. Minim Invasive Neurosurg 46:65–71

    Article  CAS  PubMed  Google Scholar 

  62. Roberts DW, Strohbein JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotactic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65:545–549

    Article  CAS  PubMed  Google Scholar 

  63. Ryan MJ, Erickson RK, Levin DN, Pelizzari CA, McDonald RL, Dohrmann GJ (1996) Frameless stereotaxy with real-time tracking of patient head movement and retrospective patient-image registration. J Neurosurgery 85:287–292

    Article  CAS  Google Scholar 

  64. Schmeider JP, Schulz T, Schmidt F, Dietrich J, Lieberenz S, Trantakis C, Seifert V, Kellermann S, Schober R, Schaffranietz L, Laufer M, Kahn T (2001) Gross total surgery of supratentorial low-grade gliomas under intraoperative MR guidance. Am J Neuroradiol 22(1):89–98

    Google Scholar 

  65. Schulder M, Liang D, Carmel PW (2001) Cranial surgery navigation aided by a compact intraoperative magnetic resonance imager. J Neurosurg 94:936–945

    Article  CAS  PubMed  Google Scholar 

  66. Seifert V, Zimmermann M, Trantakis C, Vitzthum H-E, Kühnel K, Raabe A, Bootz F, Schneider J-P, Schmidt F, Dietrich J (1999) Open MRI-guided neurosurgery. Acta Neurochir (Wien) 141:455–464

    Article  CAS  Google Scholar 

  67. Sobotta SB, Bredow J, Beuthien-Baumann B, Reiss G, Schackert G, Steinmeier R (2002) Comparison of functional brain PET images and intraoperative brain-mapping data using image guided surgery. Comput Aided Surg 7:317–325

    Article  Google Scholar 

  68. Spetzger U, Laborde G, Gilsbach JM (1995) Frameless neuronavigation in modern neurosurgery. Minim Invas Neurosurg 38:163–166

    Article  CAS  Google Scholar 

  69. Stadlbauer A, Moser E, Gruber St, Nimsky C, Fahlbusch R, Ganslandt O (2004) Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 101:287–294

    Article  PubMed  Google Scholar 

  70. Steinmeier R, Fahlbusch R, Ganslandt O, Nimsky C, Buchfelder M, Kaus M, Heigl T, Lenz G, Kuth R, Huk W (1998) Intraoperative magnetic resonance imaging with the Magnetom Open Scanner: concepts, neurosurgical indications, and procedures: a preliminary report. Neurosurgery 43:739–748

    Article  CAS  PubMed  Google Scholar 

  71. Sutherland GR, Kaibara T, Louw D, Hoult DI, Tomanek B, Saunders J (1999) A mobile high-field magnetic resonance system for neurosurgery. J Neurosurg 91:804–813

    Article  CAS  PubMed  Google Scholar 

  72. Sutherland GR, Kaibara T, Wallace C, Tomanek B, Richter M (2002) Intraoperative assessment of aneurysm clipping using magnetic resonance angiography and diffusion weighted imaging: technical case report. Neurosurgery 50(4):893–897

    Article  PubMed  Google Scholar 

  73. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P (2008) An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62:286–292

    Article  PubMed  Google Scholar 

  74. Talos IF, O’Donnell L, Westin CF, Warfield SK, Wells W III, Yoo SS, Panych LP, Golby A, Mamata H, Maier SS, Ratiu P, Gutmann CRG, Black PM, Jolesz FA, Kikinis R (2003) Diffusion tensor and functional MRI fusion with anatomical MRI for image-guided neurosurgery. In: Ellis RE, Peters TM (eds) Medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 2878. Springer, Berlin, pp 407–415

    Google Scholar 

  75. Tanaka Y, Nariai T, Momose T, Aoyagi M, Maehara T, Tomori T, Yoshino Y, Nagaoka T, Ishiwata K, Ishii K, Ohno K (2009) Glioma surgery using a multimodal navigation system with integrated metabolic images. J Neurosurg 110:163–172

    Article  PubMed  Google Scholar 

  76. Tronnier VM, Bonsanto MM, Staubert A, Knauth M, Kunze S, Wirtz CR (2001) Comparison of intraoperative MR imaging and 3D-navigated ultrasonography in the detection and resection control of lesions. Neurosurg Focus 10(2):article 3. doi:10.3171/foc20011024

    Google Scholar 

  77. Tummala RP, Chu RM, Liu H, Truwit CL, Hall WA (2001) Optimizing brain tumor resection. High field interventional MR imaging. Neuroimaging Clin N Am 11(4):673–683

    CAS  PubMed  Google Scholar 

  78. Van Velthoven V, Auer LM (1990) Practical application of intraoperative ultrasound imaging. Acta Neurochir (Wien) 105:5–13

    Article  Google Scholar 

  79. Walker DG, Talos F, Bromfield EB, Black PM (2002) Intraoperative magnetic resonance for the surgical treatment of lesions producing seizures. J Clin Neurosci 9(5):515–520

    Article  PubMed  Google Scholar 

  80. Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the navigator, a stereotactic articulated, sensitive arm. Neurosurgery 28:792–800

    Article  CAS  PubMed  Google Scholar 

  81. Woodard EJ, Leon SP, Moriaty TM, Quinones A, Zamani AA, Jolesz FA (2001) Initial experience with intraoperative resonance imaging in spine surgery. Spine 26(4):410–417

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lumenta, C., Gumprecht, H., Krammer, M. (2010). Image-Guided Neurosurgery. In: Lumenta, C., Di Rocco, C., Haase, J., Mooij, J. (eds) Neurosurgery. European Manual of Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79565-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79565-0_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79564-3

  • Online ISBN: 978-3-540-79565-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics