Skip to main content
  • 1102 Accesses

Auszug

Die Relaxometrie beurteilt die muskuläre Antwort auf die elektrische Stimulation des entsprechenden motorischen Nervs. Während die Reaktion einer einzelnen Muskelfaser auf diese Stimulation dem »Alles-oder-Nichts-Prinzip« folgt, bestimmt die Zahl der insgesamt aktivierten Muskelfasern das Ausmaß der Reizantwort des Muskels. Mit zunehmender Stromstärke kommt es zu einer progressiven Zunahme der Muskelkraft. Der betroffene Muskel entwickelt die maximal mögliche Kraft, sobald die Stärke des Reizstroms ausreicht, um alle seine Muskelfasern zu stimulieren. Mit Erreichen dieses Plateauwertes führt auch eine weitere Zunahme der Stromstärke nicht mehr zu einer Steigerung der Muskelkraft (⊡ Abb. 2.1). Diese Schwelle wird als maximale Stromstärke bezeichnet, sie kann sich bei verschiedenen Nerven geringfügig unterscheiden. Für den häufig zur Relaxometrie herangezogenen N. ulnaris liegt dieser Schwellenwert erfahrungsgemäß bei ca. 40–50 mA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 6.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Helbo-Hansen HS, Bang U, Kirkegaard Nielsen H, Skovgaard LT (1992) The accuracy of tain-of-four monitoring at varying stimulating currents. Anesthesiology 76:199–203

    Article  PubMed  CAS  Google Scholar 

  2. Baillard C, Bourdiau S, Le Toumelin P et al (2004) Assessing residual neuromuscular blockade can be deceptive in postoperative awake patients. Anesth Analg 98: 854–857

    PubMed  Google Scholar 

  3. Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J (2007) Good clinical resarch practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand 51: 789–808

    Article  PubMed  CAS  Google Scholar 

  4. Brull SJ, Silverman DG (1995) Pulse Width, Stimulus Intensity, Electrode Placement, and Polarity during assessement of neuromuscular block. Anesthesiology 83: 702–709

    Article  PubMed  CAS  Google Scholar 

  5. Plaud B, Debaenne B, Donati F (2001) The corrugator supercilii, not the orbicularis oculi, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology 95: 96–101

    Article  PubMed  CAS  Google Scholar 

  6. Brodie BC (1811) Experiments and observations on the different modes in which death is produced by certain vegetable poisons. Philos Trans R Soc 101: 194–195

    Google Scholar 

  7. Fuchs-Buder T, Eikermann M (2006) Neuromuskuläre Restblockaden: Klinische Konsequenzen, Häufigkeit und Vermeidungsstrategien Anaesthesist 55: 7–1

    CAS  Google Scholar 

  8. Gal TJ, Smith TC (1976) Partial paralysis with d-tubocurarine and the ventilatory response to CO2: an example of respiratory sparing? Anesthesiology 45: 22–28

    Article  PubMed  CAS  Google Scholar 

  9. Christie TH, Churchill-Davidson HC (1958) The St. Thomas’s Hospital nerve stimulator in the diagnosis of prolonged apnoea. Lancet 12: 776–780

    Article  Google Scholar 

  10. Eikermann M, Peters J (2004) Nerve stimulation at 0.15 Hz when compared to 0.1 Hz speeds the onset of action of cisatracurium and rocuronium. Acta Anaesthesiol Scand 44: 170–174

    Article  Google Scholar 

  11. Ali HH, Utting JE, Gray C (1970) Stimulus frequency in the detection of neuromuscular block in humans. Br J Anaesth 42: 967–978

    Article  PubMed  CAS  Google Scholar 

  12. Viby-Mogensen J, Jensen NH, Engbaeck J, Ording H, Skovgaard LT, Chraemmer-Jørgensen B (1985) Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 63: 440–443

    Article  PubMed  CAS  Google Scholar 

  13. Pedersen, T, Viby-Mogensen J, Bang U, Olsen NV, Jensen E, Engboek J (1990) Does perioperative tactile evaluation of the train-of-four response influence the frequency of postoperative residual neuromuscular blockade? Anesthesiology 73: 835–839

    Article  PubMed  CAS  Google Scholar 

  14. Engbaek J, Ostergaard D, Viby-Mogensen J (1989) Double burst stimulation (DBS): a new pattern of nerve stimulation to identify neuromuscular block. Br J Anaesth 62: 274–278

    Article  PubMed  CAS  Google Scholar 

  15. Jain AK, Sharma PK, Bhattacharya A (1995) Double burst stimulation for monitoring neuromuscular blockade for tracheal intubation. Anaesthesia 50: 23–25

    Article  PubMed  CAS  Google Scholar 

  16. Samet A, Capron F, Alla F, Meistelman C, Fuchs-Buder T (2005) Single accelerometric train-of-four, 100-Hertz tetanus or double burst stimulation: which test performs better to detect residual paralysis? Anesthesiology 102: 51–56

    Article  PubMed  Google Scholar 

  17. Capron F, Fortier LP, Racine S, Donati F (2006) Tactile fade detection with hand or wrist stimulation using train-of-four, double burst stimulation, 50-Hertz tetanus, 100-Hertz tetanus, and acceleromyography. Anesth Analg 102: 1578–1584

    Article  PubMed  Google Scholar 

  18. Tassonyi E (1975) A new concept in the measurement of neuromuscular transmission and block. Anaesthesist 24: 374–377

    PubMed  CAS  Google Scholar 

  19. Baurain M, Hennart DA, Godschalx A, Huybrechts I, Nasrallah G, d’Hollander AA, Cantraine F (1998) Visual evaluation of residual curarisation in anesthetized patients using one hundered-hertz, five-second tetanic stimulation at the adductor pollicis muscle. Anesth Analg 87: 185–189

    Article  PubMed  CAS  Google Scholar 

  20. Viby-Mogensen J, Howardy-Hansen P, Chraemmer-Jorgensen B, Ording H, Engbaek J, Nielsen A (1981) Posttetanic count (PTC): a new method of evaluating an intense nondepolarizing neuromuscular blockade. Anesthesiology 55: 458–461

    Article  PubMed  CAS  Google Scholar 

  21. Motamed C, Kirov K, Combes X, Duvaldestin P (2005) Does repetition of post-tetanic count every 3 min during profound relaxation affect accelerographic recovery of atracurium blockade? Acta Anaesthesiol Scand 49: 811–814

    Article  PubMed  CAS  Google Scholar 

  22. Ueda N, Muteki T, Tsuda H, Masuda Y, Ohishi K, Tobata H (1993) Determining the optimal time for endotracheal intubation during onset of neuromuscular blockade. Eur J Anaesthesiol 10: 3–8

    PubMed  CAS  Google Scholar 

  23. Lee CM (1975) Train-of-four quantitation of competitive neuromuscular block. Anesth Analg 56: 649–653

    Google Scholar 

  24. Krombach J, Krieg N, Diefenbach C (1999) Zuverlässigkeit und Dosisabhängigkeit des train-of-four count. Anaesthesist 48: 519–52

    Article  PubMed  CAS  Google Scholar 

  25. Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jørgensen B (1985) Tactile and visual evaluation of the response to train-of-four stimulation. Anesthesiology 63: 440–443

    Article  PubMed  CAS  Google Scholar 

  26. Drenck NE, Ueda N, Olsen NV, Engbaek J, Jensen E, Skovgaard LT, Viby-Mogensen J (1989) Manual evaluation of residual curarization using double burst stimulation: A comparision with train-of-four. Anesthesiology 70: 578–581

    Article  PubMed  CAS  Google Scholar 

  27. Jensen E, Viby-Mogensen J, Bang U (1988) The accelerograph: a new neuromuscular transmission monitor. Acta Anaesthesiol Scand 32: 49–52

    Article  PubMed  CAS  Google Scholar 

  28. Capron F, Alla F, Hottier C, Meistelman C, Fuchs-Buder T (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9 Anesthesiology 100: 119–124

    Article  Google Scholar 

  29. Bellemare F, Couture J, Donati F, Plaud B (2000) Temporal relation between accustic and force response at the adductor pollicis during nondepolarizing neuromuscular block. Anesthesiology 93: 646–652

    Article  PubMed  CAS  Google Scholar 

  30. Hemmerling TM, Michaud G, Trager G, Deschamps S (2004) Phonomypgraphic measurement of neuromuscular blockade are similar to mechanomyography for hand muscles. Canadain Journal of Anaesthesia 51: 795–800

    Google Scholar 

  31. Dahaba AA, von Klobucar F, Rehak HP, List WF (2002) The neuromuscular transmission module versus the relaxometer mechanomyograph for neuromuscular block monitoring. Anesthesia Analgesia 94: 591–596

    Article  PubMed  Google Scholar 

  32. Trager G, Michaud G, Deschamps S, Hemmerling TM (2006) Comparison of phonomyography, kinemyography and mechanomyography for neuromuscular monitoring. Canadian Journal of Anesthesia 53: 130–135

    PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

(2008). Grundlagen des neuromuskulären Monitorings. In: Neuromuskuläres Monitoring in Klinik und Forschung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78570-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78570-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78569-9

  • Online ISBN: 978-3-540-78570-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics