Skip to main content

Abstract

The field of tissue engineering is multidisciplinary, seeking to fabricate artificial organs or substitutes in order to replace failing or damaged organs. These engineered tissues and organs are mostly targeted as substitutes for human donor tissues and as such are developed to avoid the complications associated with donor matching and immune rejection [1]. Examples include substitutes of organs including liver, heart, kidney, skin, teeth, and cornea [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354 Suppl 1:SI32–4

    Article  Google Scholar 

  2. Atala A, Lanza RP, editors (2002) Methods of Tissue Engineering. San Diego: Academic Press;

    Google Scholar 

  3. Boudreau N, Myers C, Bissell MJ (1995) From laminin to lamin: regulation of tissue-specific gene expression by the ECM. Trends Cell Biol 5:1–4

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin HS (1996) Early embryonic vascular development. Cardiovasc Res 31 Spec No:E34–45

    Google Scholar 

  5. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–52

    Article  PubMed  CAS  Google Scholar 

  6. Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, et al. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21:111–4

    Article  PubMed  CAS  Google Scholar 

  7. Huschtscha LI, Reddel RR (1999) p16(INK4a) and the control of cellular proliferative life span. Carcinogenesis 20:921–6

    Article  PubMed  CAS  Google Scholar 

  8. Wynford-Thomas D (1996) p53: guardian of cellular senescence. J Pathol 180:118–21

    Article  PubMed  CAS  Google Scholar 

  9. Rhim JS, Tsai WP, Chen ZQ, Chen Z, Van Waes C, Burger AM, et al. (1998) A human vascular endothelial cell model to study angiogenesis and tumorigenesis. Carcinogenesis 19:673–81

    Article  PubMed  CAS  Google Scholar 

  10. Watsky MA, Griffith M (2000) Whose Naughty or Nice: Electrophysiological Screening of Cells for Use in Tissue-Engineered Corneas. e-biomed: The Journal of Regenerative Medicine 1:115–20

    Article  CAS  Google Scholar 

  11. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37:15–26

    Article  PubMed  CAS  Google Scholar 

  12. Nishida T. Cornea (1997) Fundamentals of cornea and external disease. In: Krachmer JJ, Mannis MJ, Holland EJ, editors. Cornea. St. Louis, Missouri: Mosby-Year Book Inc. p. 3–27

    Google Scholar 

  13. Jonas JB, Holbach L (2005) Central corneal thickness and thickness of the lamina cribrosa in human eyes. Invest Ophthalmol Vis Sci 46:1275–9

    Article  PubMed  Google Scholar 

  14. Freegard TJ (1997) The physical basis of transparency of the normal cornea. Eye 11 ( Pt 4):465–71

    PubMed  Google Scholar 

  15. Niederkorn JY (1990) Immune privilege and immune regulation in the eye. Adv Immunol 48:191–226

    Article  PubMed  CAS  Google Scholar 

  16. Rozsa AJ, Beuerman RW (1982) Density and organization of free nerve endings in the corneal epithelium of the rabbit. Pain 14:105–20

    Article  PubMed  CAS  Google Scholar 

  17. Ren H, Wilson G (1996) Apoptosis in the corneal epithelium. Invest Ophthalmol Vis Sci 37:1017–25

    PubMed  CAS  Google Scholar 

  18. Dua HS, Azuara-Blanco A (2000) Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44:415–25

    Article  PubMed  CAS  Google Scholar 

  19. Sack RA, Nunes I, Beaton A, Morris C (2001) Host-defense mechanism of the ocular surfaces. Biosci Rep 21:463–80

    Article  PubMed  CAS  Google Scholar 

  20. Komai Y, Ushiki T (1991) The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci 32:2244–58

    PubMed  CAS  Google Scholar 

  21. Ueda A, Nishida T, Otori T, Fujita H (1987) Electron-microscopic studies on the presence of gap junctions between corneal fibroblasts in rabbits. Cell Tissue Res 249:473–5

    Article  PubMed  CAS  Google Scholar 

  22. Watsky MA (1995) Keratocyte gap junctional communication in normal and wounded rabbit corneas and human corneas. Invest Ophthalmol Vis Sci 36:2568–76

    PubMed  CAS  Google Scholar 

  23. Michelacci YM (2003) Collagens and proteoglycans of the corneal extracellular matrix. Braz J Med Biol Res 36:1037–46

    Article  PubMed  CAS  Google Scholar 

  24. ten Tusscher MP, Klooster J, van der Want JJ, Lamers WP, Vrensen GF (1989) The allocation of nerve fibres to the anterior eye segment and peripheral ganglia of rats. I. The sensory innervation. Brain Res 494:95–104

    Article  PubMed  Google Scholar 

  25. Muller LJ, Pels L, Vrensen GF (1996) Ultrastructural organization of human corneal nerves. Invest Ophthalmol Vis Sci 37:476–88

    PubMed  CAS  Google Scholar 

  26. Draize JH, Woodard G, Calvery HO (1944) Method for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–89

    CAS  Google Scholar 

  27. Bagley DM, Waters D, Kong BM (1994) Development of a 10-day chorioallantoic membrane vascular assay as an alternative to the Draize rabbit eye irritation test. Food Chem Toxicol 32:1155–60

    Article  PubMed  CAS  Google Scholar 

  28. Gautheron P, Dukic M, Alix D, Sina JF (1992) Bovine corneal opacity and permeability test: an in vitro assay of ocular irritancy. Fundam Appl Toxicol 18:442–9

    Article  PubMed  CAS  Google Scholar 

  29. Ward SL, Walker TL, Dimitrijevich SD (1997) Evaluation of chemically-induced toxicity using an in vitro model of human corneal epithelium. Toxicol In Vitro 11

    Google Scholar 

  30. Klausner M, Hayden PJ, Breyfogle BA, Bellavance KL, Osborn MM, Cerven DR, et al (2003) The EpiOcular Prediction Model: A Reproducible In Vitro Means of Assessing Ocular Irritancy. In: Salem H, Katz SA, editors. Alternative toxicological methods Boca Raton, Fla.: CRC Press. p. 591

    Google Scholar 

  31. Zieske JD, Mason VS, Wasson ME, Meunier SF, Nolte CJ, Fukai N, et al. (1994) Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction. Exp Cell Res 214:621–33

    Article  PubMed  CAS  Google Scholar 

  32. Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, et al. (1999) Functional human corneal equivalents constructed from cell lines. Science 286:2169–72

    Article  PubMed  CAS  Google Scholar 

  33. Suuronen EJ, Nakamura M, Watsky MA, Stys PK, Muller LJ, Munger R, et al. (2004) Innervated human corneal equivalents as in vitro models for nerve-target cell interactions. Faseb J 18:170–2

    PubMed  CAS  Google Scholar 

  34. Chan KY, Haschke RH (1982) Isolation and culture of corneal cells and their interactions with dissociated trigeminal neurons. Exp Eye Res 35:137–56

    Article  PubMed  CAS  Google Scholar 

  35. Riggott MJ, Moody SA (1987) Distribution of laminin and fibronectin along peripheral trigeminal axon pathways in the developing chick. J Comp Neurol 258:580–96

    Article  PubMed  CAS  Google Scholar 

  36. Corcoran J, Shroot B, Pizzey J, Maden M (2000) The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 113 ( Pt 14):2567–74

    PubMed  CAS  Google Scholar 

  37. Muller LJ, Vrensen GF, Pels L, Cardozo BN, Willekens B (1997) Architecture of human corneal nerves. Invest Ophthalmol Vis Sci 38:985–94

    PubMed  CAS  Google Scholar 

  38. Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol 512 ( Pt 1):211–7

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura M, Nishida T, Ofuji K, Reid TW, Mannis MJ, Murphy CJ (1997) Synergistic effect of substance P with epidermal growth factor on epithelial migration in rabbit cornea. Exp Eye Res 65:321–9

    Article  PubMed  CAS  Google Scholar 

  40. Trent JF, Kirsner RS (1998) Tissue engineered skin: Apligraf, a bi-layered living skin equivalent. Int J Clin Pract 52:408–13

    PubMed  CAS  Google Scholar 

  41. Suuronen EJ, McLaughlin CR, Stys PK, Nakamura M, Munger R, Griffith M (2004) Functional innervation in tissue engineered models for in vitro study and testing purposes. Toxicol Sci 82:525–33

    Article  PubMed  CAS  Google Scholar 

  42. Johansson S (1994) Graded action potentials generated by differentiated human neuroblastoma cells. Acta Physiol Scand 151:331–41

    Article  PubMed  CAS  Google Scholar 

  43. Araki-Sasaki K, Aizawa S, Hiramoto M, Nakamura M, Iwase O, Nakata K, et al. (2000) Substance P-induced cadherin expression and its signal transduction in a cloned human corneal epithelial cell line. J Cell Physiol 182:189–95

    Article  PubMed  CAS  Google Scholar 

  44. Suuronen EJ, Muzakare L, Doillon CJ, Kapila V, Li F, Ruel M, et al. (2006) Promotion of angiogenesis in tissue engineering: developing multicellular matrices with multiple capacities. Int J Artif Organs 29:1148–57

    PubMed  CAS  Google Scholar 

  45. Bee JA (1982) The development and pattern of innervation of the avian cornea. Dev Biol 92:5–15

    Article  PubMed  CAS  Google Scholar 

  46. Adamis AP, Aiello LP, D‘Amato RA (1999) Angiogenesis and ophthalmic disease. Angiogenesis 3:9–14

    Article  PubMed  CAS  Google Scholar 

  47. Deroanne CF, Lapiere CM, Nusgens BV (2001) In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res 49:647–58

    Article  PubMed  CAS  Google Scholar 

  48. Sieminski AL, Hebbel RP, Gooch KJ (2005) Improved microvascular network in vitro by human blood outgrowth endothelial cells relative to vessel-derived endothelial cells. Tissue Eng 11:1332–45

    Article  PubMed  CAS  Google Scholar 

  49. Davis GE, Camarillo CW (1996) An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp Cell Res 224:39–51

    Article  PubMed  CAS  Google Scholar 

  50. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112 (Pt 19):3249–58

    PubMed  CAS  Google Scholar 

  51. Yang S, Graham J, Kahn JW, Schwartz EA, Gerritsen ME (1999) Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol 155:887–95

    PubMed  CAS  Google Scholar 

  52. Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9:111–25

    Article  PubMed  CAS  Google Scholar 

  53. Sieminski AL, Padera RF, Blunk T, Gooch KJ (2002) Systemic delivery of human growth hormone using genetically modified tissue-engineered microvascular networks: prolonged delivery and endothelial survival with inclusion of nonendothelial cells. Tissue Eng 8:1057–69

    Article  PubMed  CAS  Google Scholar 

  54. Montesano R, Vassalli JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci U S A 83:7297–301

    Article  PubMed  CAS  Google Scholar 

  55. Satake S, Kuzuya M, Ramos MA, Kanda S, Iguchi A (1998) Angiogenic stimuli are essential for survival of vascular endothelial cells in three-dimensional collagen lattice. Biochem Biophys Res Commun 244:642–6

    Article  PubMed  CAS  Google Scholar 

  56. Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106:1375–84

    Article  PubMed  CAS  Google Scholar 

  57. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–31

    Article  PubMed  CAS  Google Scholar 

  58. Park HJ, Kong D, Iruela-Arispe L, Begley U, Tang D, Galper JB (2002) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors interfere with angiogenesis by inhibiting the geranylgeranylation of RhoA. Circ Res 91:143–50

    Article  PubMed  CAS  Google Scholar 

  59. Takeda A, Hata Y, Shiose S, Sassa Y, Honda M, Fujisawa K, et al. (2003) Suppression of experimental choroidal neovascularization utilizing KDR selective receptor tyrosine kinase inhibitor. Graefes Arch Clin Exp Ophthalmol 241:765–72

    Article  PubMed  Google Scholar 

  60. Coussens LM, Werb Z (1996) Matrix metalloproteinases and the development of cancer. Chem Biol 3:895–904

    Article  PubMed  CAS  Google Scholar 

  61. Lafleur MA, Handsley MM, Knauper V, Murphy G, Edwards DR (2002) Endothelial tubulogenesis within fibrin gels specifically requires the activity of membrane-type-matrix metalloproteinases (MT-MMPs). J Cell Sci 115:3427–38

    PubMed  CAS  Google Scholar 

  62. Chan VT, Zhang DN, Nagaravapu U, Hultquist K, Romero LI, Herron GS (1998) Membrane-type matrix metalloproteinases in human dermal microvascular endothelial cells: expression and morphogenetic correlation. J Invest Dermatol 111:1153–9

    Article  PubMed  CAS  Google Scholar 

  63. Overall CM, Kleifeld O (2006) Towards third generation matrix metalloproteinase inhibitors for cancer therapy. Br J Cancer 94:941–6

    Article  PubMed  CAS  Google Scholar 

  64. Thabet MM, Huizinga TW (2006) Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr Opin Investig Drugs 7:1014–9

    PubMed  CAS  Google Scholar 

  65. Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte–matrix interactions. Instr Course Lect 47:477–86

    PubMed  CAS  Google Scholar 

  66. Freemont AJ, Hoyland J (2006) Lineage plasticity and cell biology of fibrocartilage and hyaline cartilage: its significance in cartilage repair and replacement. Eur J Radiol 57:32–6

    Article  PubMed  Google Scholar 

  67. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 10:432–63

    Article  PubMed  CAS  Google Scholar 

  68. Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S (2006) Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 57:16–23

    Article  PubMed  Google Scholar 

  69. Buckwalter JA, Mankin HJ (1998) Articular cartilage repair and transplantation. Arthritis Rheum 41:1331–42

    Article  PubMed  CAS  Google Scholar 

  70. Schultz O, Keyszer G, Zacher J, Sittinger M, Burmester GR (1997) Development of in vitro model systems for destructive joint diseases: novel strategies for establishing inflammatory pannus. Arthritis Rheum 40:1420–8

    Article  PubMed  CAS  Google Scholar 

  71. Cortial D, Gouttenoire J, Rousseau CF, Ronziere MC, Piccardi N, Msika P, et al. (2006) Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthritis Cartilage 14:631–40

    Article  PubMed  CAS  Google Scholar 

  72. Augustine AJ, Oleksyszyn J (1997) Glucocorticosteroids inhibit degradation in bovine cartilage explants stimulated with concomitant plasminogen and interleukin-1 alpha. Inflamm Res 46:60–4

    Article  PubMed  CAS  Google Scholar 

  73. Cheung JO, Grant ME, Jones CJ, Hoyland JA, Freemont AJ, Hillarby MC (2003) Apoptosis of terminal hypertrophic chondrocytes in an in vitro model of endochondral ossification. J Pathol 201:496–503

    Article  PubMed  CAS  Google Scholar 

  74. Slavin J (1996) The role of cytokines in wound healing. J Pathol 178:5–10

    Article  PubMed  CAS  Google Scholar 

  75. Smola H, Stark HJ, Thiekotter G, Mirancea N, Krieg T, Fusenig NE (1998) Dynamics of basement membrane formation by keratinocyte-fibroblast interactions in organotypic skin culture. Exp Cell Res 239:399–410

    Article  PubMed  CAS  Google Scholar 

  76. Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    Article  PubMed  CAS  Google Scholar 

  77. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Invest Dermatol 125:183–200

    PubMed  CAS  Google Scholar 

  78. Fuchs E (2007) Scratching the surface of skin development. Nature 445:834–42

    Article  PubMed  CAS  Google Scholar 

  79. McMillan JR, Akiyama M, Shimizu H (2003) Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31:169–77

    Article  PubMed  CAS  Google Scholar 

  80. Kielty CM, Shuttleworth CA (1997) Microfibrillar elements of the dermal matrix. Microsc Res Tech 38:413–27

    Article  PubMed  CAS  Google Scholar 

  81. Olsen BR (1991) Collagen Biosynthesis. In: Hay ED, editor. Cell Biology of the Extracellular Matrix. New York: Plenum Press. p. 177–220

    Google Scholar 

  82. Ushiki T (2002) Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol 65:109–26

    Article  PubMed  Google Scholar 

  83. Bello YM, Falabella AF, Eaglstein WH (2001) Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2:305–13

    Article  PubMed  CAS  Google Scholar 

  84. Horch RE, Kopp J, Kneser U, Beier J, Bach AD (2005) Tissue engineering of cultured skin substitutes. J Cell Mol Med 9:592–608

    Article  PubMed  Google Scholar 

  85. Shakespeare PG (2005) The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 23:413–8

    Article  PubMed  Google Scholar 

  86. Supp DM, Boyce ST (2005) Engineered skin substitutes: practices and potentials. Clin Dermatol 23:403–12

    Article  PubMed  Google Scholar 

  87. Boyce ST (1998) Skin substitutes from cultured cells and collagen-GAG polymers. Med Biol Eng Comput 36:791–800

    Article  PubMed  CAS  Google Scholar 

  88. Compton CC (1992) Current concepts in pediatric burn care: the biology of cultured epithelial autografts: an eight-year study in pediatric burn patients. Eur J Pediatr Surg 2:216–22

    Article  PubMed  CAS  Google Scholar 

  89. Eaglstein WH, Falanga V (1997) Tissue engineering and the development of Apligraf, a human skin equivalent. Clin Ther 19:894–905

    Article  PubMed  CAS  Google Scholar 

  90. Eaglstein WH, Falanga V (1998) Tissue engineering and the development of Apligraf, a human skin equivalent. Cutis 62:1–8

    PubMed  CAS  Google Scholar 

  91. Eaglstein WH, Falanga V (1998) Tissue engineering and the development of Apligraf a human skin equivalent. Adv Wound Care 11:1–8

    PubMed  CAS  Google Scholar 

  92. Hansbrough JF, Dore C, Hansbrough WB (1992) Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. J Burn Care Rehabil 13:519–29

    Article  PubMed  CAS  Google Scholar 

  93. Higham MC, Dawson R, Szabo M, Short R, Haddow DB, MacNeil S (2003) Development of a stable chemically defined surface for the culture of human keratinocytes under serum-free conditions for clinical use. Tissue Eng 9:919–30

    Article  PubMed  CAS  Google Scholar 

  94. Kirsner RS (1998) The use of Apligraf in acute wounds. J Dermatol 25:805–11

    PubMed  CAS  Google Scholar 

  95. Fentem JH, Botham PA (2002) ECVAM’s activities in validating alternative tests for skin corrosion and irritation. Altern Lab Anim 30 Suppl 2:61–7

    PubMed  CAS  Google Scholar 

  96. Osborne R, Perkins MA (1994) An approach for development of alternative test methods based on mechanisms of skin irritation. Food Chem Toxicol 32:133–42

    Article  PubMed  CAS  Google Scholar 

  97. Ponec M (2002) Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev 54 Suppl 1:S19–30

    Article  Google Scholar 

  98. Welss T, Basketter DA, Schroder KR (2004) In vitro skin irritation: facts and future. State of the art review of mechanisms and models. Toxicol In Vitro 18:231–43

    Article  PubMed  CAS  Google Scholar 

  99. Bell E, Ivarsson B, Merrill C (1979) Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A 76:1274–8

    Article  PubMed  CAS  Google Scholar 

  100. Boyce ST, Ham RG (1983) Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol 81:33s–40s

    Article  PubMed  CAS  Google Scholar 

  101. Coulomb B, Lebreton C, Dubertret L (1989) Influence of human dermal fibroblasts on epidermalization. J Invest Dermatol 92:122–5

    Article  PubMed  CAS  Google Scholar 

  102. Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–54

    Article  PubMed  CAS  Google Scholar 

  103. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–43

    Article  PubMed  CAS  Google Scholar 

  104. Wille JJ, Jr., Pittelkow MR, Shipley GD, Scott RE (1984) Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol 121:31–44

    Article  PubMed  CAS  Google Scholar 

  105. Yuspa SH, Kilkenny AE, Steinert PM, Roop DR (1989) Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 109:1207–17

    Article  PubMed  CAS  Google Scholar 

  106. Curren RD, Mun GC, Gibson DP, Aardema MJ (2006) Development of a method for assessing micronucleus induction in a 3D human skin model (EpiDerm). Mutat Res 607:192–204

    PubMed  CAS  Google Scholar 

  107. Fentem JH (1999) Validation of in vitro Tests for Skin Corrosivity. Altex 16:150–3

    PubMed  Google Scholar 

  108. Fentem JH, Briggs D, Chesne C, Elliott GR, Harbell JW, Heylings JR, et al. (2001) A prevalidation study on in vitro tests for acute skin irritation. results and evaluation by the Management Team. Toxicol In Vitro 15:57–93

    Article  PubMed  CAS  Google Scholar 

  109. Hoffmann S, Hartung T (2006) Designing validation studies more efficiently according to the modular approach: retrospective analysis of the EPISKIN test for skin corrosion. Altern Lab Anim 34:177–91

    PubMed  CAS  Google Scholar 

  110. Kandarova H, Liebsch M, Spielmann H, Genschow E, Schmidt E, Traue D, et al. (2006) Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. Toxicol In Vitro 20:547–59

    Article  PubMed  CAS  Google Scholar 

  111. Netzlaff F, Lehr CM, Wertz PW, Schaefer UF (2005) The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm 60:167–78

    Article  PubMed  CAS  Google Scholar 

  112. Perkins MA, Osborne R, Johnson GR (1996) Development of an in vitro method for skin corrosion testing. Fundam Appl Toxicol 31:9–18

    Article  PubMed  CAS  Google Scholar 

  113. OECD (2004) OECD guideline for testing of chemicals. Paris, France: Organisation for Economic Co-operation and development;

    Google Scholar 

  114. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–4

    Article  PubMed  CAS  Google Scholar 

  115. El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M (2005) Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol 124:79–86

    Article  PubMed  Google Scholar 

  116. Hansbrough JF, Morgan JL, Greenleaf GE, Bartel R (1993) Composite grafts of human keratinocytes grown on a polyglactin mesh-cultured fibroblast dermal substitute function as a bilayer skin replacement in full-thickness wounds on athymic mice. J Burn Care Rehabil 14:485–94

    Article  PubMed  CAS  Google Scholar 

  117. Hayden PJ, Ayehunie S, Jackson GR, Kupfer-Lamore S, Last TJ, Klausner M, et al (2003) In vitro skin equivalent models for toxicity testing. In: Salem H, Katz SA, editors. Alternative Toxicological Methods. Boca Raton, FL, USA: CRC Press. p. 229–47

    Google Scholar 

  118. Stark HJ, Szabowski A, Fusenig NE, Maas-Szabowski N (2004) Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system. Biol Proced Online 6:55–60

    Article  PubMed  CAS  Google Scholar 

  119. Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK (2000) Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp Cell Res 258:270–8

    Article  PubMed  CAS  Google Scholar 

  120. Wang CK, Nelson CF, Brinkman AM, Miller AC, Hoeffler WK (2000) Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent. J Invest Dermatol 114:674–80

    Article  PubMed  CAS  Google Scholar 

  121. Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 153:611–26

    PubMed  CAS  Google Scholar 

  122. Uchida Y, Hamanaka S (2006) Stratum corneum ceramides: Function, origins and therepeutic applications. In: Elias PM, Feingold KR, editors. Skin Barrier. New York, NY, USA: Taylor & Francis. p. 43–64

    Google Scholar 

  123. Wertz PW. Biochemistry of human stratum corneum lipids. In: Elias PM, Feingold KR, editors. 2006 Skin Barrier. New York, NY, USA: Taylor & Francis. p. 33–42.

    Google Scholar 

  124. Oestmann E, Lavrijsen AP, Hermans J, Ponec M (1993) Skin barrier function in healthy volunteers as assessed by transepidermal water loss and vascular response to hexyl nicotinate: intra- and inter-individual variability. Br J Dermatol 128:130–6

    Article  PubMed  CAS  Google Scholar 

  125. Pinnagoda J, Tupker RA, Agner T, Serup J (1990) Guidelines for transepidermal water loss (TEWL) measurement. A report from the Standardization Group of the European Society of Contact Dermatitis. Contact Dermatitis 22:164–78

    Article  PubMed  CAS  Google Scholar 

  126. Levy JJ, von Rosen J, Gassmuller J, Kleine Kuhlmann R, Lange L (1995) Validation of an in vivo wound healing model for the quantification of pharmacological effects on epidermal regeneration. Dermatology 190:136–41

    Article  PubMed  CAS  Google Scholar 

  127. Visscher M, Hoath SB, Conroy E, Wickett RR (2001) Effect of semipermeable membranes on skin barrier repair following tape stripping. Arch Dermatol Res 293:491–9

    Article  PubMed  CAS  Google Scholar 

  128. Breternitz M, Flach M, Prassler J, Elsner P, Fluhr JW (2007) Acute barrier disruption by adhesive tapes is influenced by pressure, time and anatomical location: integrity and cohesion assessed by sequential tape stripping. A randomized, controlled study. Br J Dermatol 156:231–40

    Article  PubMed  CAS  Google Scholar 

  129. Wertz PW (2000) Lipids and barrier function of the skin. Acta Derm Venereol Suppl (Stockh) 208:7–11

    Article  CAS  Google Scholar 

  130. Koria P, Brazeau D, Kirkwood K, Hayden P, Klausner M, Andreadis ST (2003) Gene expression profile of tissue engineered skin subjected to acute barrier disruption. J Invest Dermatol 121:368–82

    Article  PubMed  CAS  Google Scholar 

  131. Ponec M, Weerheim A, Kempenaar J, Mulder A, Gooris GS, Bouwstra J, et al. (1997) The formation of competent barrier lipids in reconstructed human epidermis requires the presence of vitamin C. J Invest Dermatol 109:348–55

    Article  PubMed  CAS  Google Scholar 

  132. Ponec M, Boelsma E, Weerheim A, Mulder A, Bouwstra J, Mommaas M (2000) Lipid and ultrastructural characterization of reconstructed skin models. Int J Pharm 203:211–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McLaughlin, C. et al. (2009). Tissue Engineered Models for In Vitro Studies. In: Meyer, U., Handschel, J., Wiesmann, H., Meyer, T. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77755-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77755-7_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77754-0

  • Online ISBN: 978-3-540-77755-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics