Skip to main content

Scanning Probe Microscopy – Principle of Operation, Instrumentation, and Probes

  • Chapter
Nanotribology and Nanomechanics

Abstract

Since the introduction of the STM in 1981 and the AFM in 1985, many variations of probe-based microscopies, referred to as SPMs, have been developed. While the pure imaging capabilities of SPM techniques initially dominated applications of these methods, the physics of probe–sample interactions and quantitative analyses of tribological, electronic, magnetic, biological, and chemical surfaces using SPMs have become of increasing interest in recent years. SPMs are often associated with nanoscale science and technology, since they allow investigation and manipulation of surfaces down to the atomic scale. As our understanding of the underlying interaction mechanisms has grown, SPMs have increasingly found application in many fields beyond basic research fields. In addition, various derivatives of all these methods have been developed for special applications, some of them intended for areas other than microscopy. This chapter presents an overview of STM and AFM and various probes (tips) used in these instruments, followed by details on AFM instrumentation and analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)

    Article  Google Scholar 

  2. G. Binnig, C.F. Quate, Ch. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 930–933 (1986)

    Article  Google Scholar 

  3. G. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Atomic resolution with atomic force microscope, Europhys. Lett. 3, 1281–1286 (1987)

    Article  CAS  Google Scholar 

  4. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  5. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Atomic-scale friction of a tungsten tip on a graphite surface, Phys. Rev. Lett. 59, 1942–1945 (1987)

    Article  CAS  Google Scholar 

  6. R. Erlandsson, G.M. McClelland, C.M. Mate, S. Chiang: Atomic force microscopy using optical interferometry, J. Vacuum Sci. Technol. A 6, 266–270 (1988)

    Article  CAS  Google Scholar 

  7. O. Marti, J. Colchero, J. Mlynek: Combined scanning force and friction microscopy of mica, Nanotechnology 1, 141–144 (1990)

    Article  Google Scholar 

  8. G. Meyer, N.M. Amer: Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, Appl. Phys. Lett. 57, 2089–2091 (1990)

    Article  CAS  Google Scholar 

  9. B. Bhushan, J. Ruan: Atomic-scale friction measurements using friction force microscopy: Part II – Application to magnetic media, ASME J. Tribol. 116, 389–396 (1994)

    CAS  Google Scholar 

  10. B. Bhushan, V.N. Koinkar, J. Ruan: Microtribology of magnetic media, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 208, 17–29 (1994)

    Article  Google Scholar 

  11. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear, and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  CAS  Google Scholar 

  12. S. Fujisawa, M. Ohta, T. Konishi, Y. Sugawara, S. Morita: Difference between the forces measured by an optical lever deflection and by an optical interferometer in an atomic force microscope, Rev. Sci. Instrum. 65, 644–647 (1994)

    Article  Google Scholar 

  13. S. Fujisawa, E. Kishi, Y. Sugawara, S. Morita: Fluctuation in 2-dimensional stick-slip phenomenon observed with 2-dimensional frictional force microscope, Jpn. J. Appl. Phys. 33, 3752–3755 (1994)

    Article  CAS  Google Scholar 

  14. S. Grafstrom, J. Ackermann, T. Hagen, R. Neumann, O. Probst: Analysis of lateral force effects on the topography in scanning force microscopy, J. Vacuum Sci. Technol. B 12, 1559–1564 (1994)

    Article  Google Scholar 

  15. R.M. Overney, H. Takano, M. Fujihira, W. Paulus, H. Ringsdorf: Anisotropy in friction and molecular stick-slip motion, Phys. Rev. Lett. 72, 3546–3549 (1994)

    Article  CAS  Google Scholar 

  16. R.J. Warmack, X.Y. Zheng, T. Thundat, D.P. Allison: Friction effects in the deflection of atomic force microscope cantilevers, Rev. Sci. Instrum. 65, 394–399 (1994)

    Article  Google Scholar 

  17. N.A. Burnham, D.D. Domiguez, R.L. Mowery, R.J. Colton: Probing the surface forces of monolayer films with an atomic force microscope, Phys. Rev. Lett. 64, 1931–1934 (1990)

    Article  CAS  Google Scholar 

  18. N.A. Burham, R.J. Colton, H.M. Pollock: Interpretation issues in force microscopy, J. Vacuum Sci. Technol. A 9, 2548–2556 (1991)

    Article  Google Scholar 

  19. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton, C.M. Lieber: Functional group imaging by chemical force microscopy, Science 265, 2071–2074 (1994)

    Article  CAS  Google Scholar 

  20. V.N. Koinkar, B. Bhushan: Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy, J. Vacuum Sci. Technol. A 14, 2378–2391 (1996)

    Article  CAS  Google Scholar 

  21. V. Scherer, B. Bhushan, U. Rabe, W. Arnold: Local elasticity and lubrication measurements using atomic force and friction force microscopy at ultrasonic frequencies, IEEE Trans. Magn. 33, 4077–4079 (1997)

    Article  CAS  Google Scholar 

  22. V. Scherer, W. Arnold, B. Bhushan: Lateral force microscopy using acoustic friction force microscopy, Surf. Interf. Anal. 27, 578–587 (1999)

    Article  CAS  Google Scholar 

  23. B. Bhushan, S. Sundararajan: Micro/Nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy, Acta Mater. 46, 3793–3804 (1998)

    Article  CAS  Google Scholar 

  24. U. Krotil, T. Stifter, H. Waschipky, K. Weishaupt, S. Hild, O. Marti: Pulse force mode: A new method for the investigation of surface properties, Surf. Interf. Anal. 27, 336–340 (1999)

    Article  CAS  Google Scholar 

  25. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87, 1201–1210 (2000)

    Article  CAS  Google Scholar 

  26. B. Bhushan: Micro/Nanotribology and its Applications (Kluwer, Dordrecht 1997)

    Google Scholar 

  27. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  28. B. Bhushan: Modern Tribology Handbook Vol.1: Principles of Tribology (CRC, Boca Raton 2001)

    Google Scholar 

  29. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  30. M. Reinstaedtler, U. Rabe, V. Scherer, U. Hartmann, A. Goldade, B. Bhushan, W. Arnold: On the nanoscale measurement of friction using atomic force microscope cantilever torsional resonances, Appl. Phys. Lett. 82, 2604–2606 (2003)

    Article  CAS  Google Scholar 

  31. N.A. Burnham, R.J. Colton: Measuring the nanomechanical properties and surface forces of materials using an atomic force microscope, J. Vacuum Sci. Technol. A 7, 2906–2913 (1989)

    Article  CAS  Google Scholar 

  32. P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, P.K. Hansma: Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103–106 (1991)

    Article  Google Scholar 

  33. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek: Nano/Picoindentation measurements using capacitive transducer in atomic force microscopy, Philos. Mag. A 74, 1117–1128 (1996)

    Article  CAS  Google Scholar 

  34. B. Bhushan, V.N. Koinkar: Nanoindentation hardness measurements using atomic force microscopy, Appl. Phys. Lett. 75, 5741–5746 (1994)

    CAS  Google Scholar 

  35. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  CAS  Google Scholar 

  36. S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, W. Arnold: Measurements of mechanical properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75–84 (2001)

    Article  CAS  Google Scholar 

  37. D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunnelling microscope, Nature 344, 524–528 (1990)

    Article  CAS  Google Scholar 

  38. A.L. Weisenhorn, J.E. MacDougall, J.A.C. Gould, S.D. Cox, W.S. Wise, J. Massie, P. Maivald, V.B. Elings, G.D. Stucky, P.K. Hansma: Imaging and manipulating of molecules on a zeolite surface with an atomic force microscope, Science 247, 1330–1333 (1990)

    Article  CAS  Google Scholar 

  39. I.W. Lyo, Ph. Avouris: Field-induced nanometer-to-atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)

    Article  CAS  Google Scholar 

  40. O.M. Leung, M.C. Goh: Orientation ordering of polymers by atomic force microscope tip-surface interactions, Science 225, 64–66 (1992)

    Article  Google Scholar 

  41. D.W. Abraham, H.J. Mamin, E. Ganz, J. Clark: Surface modification with the scanning tunneling microscope, IBM J. Res. Dev. 30, 492–499 (1986)

    Article  CAS  Google Scholar 

  42. R.M. Silver, E.E. Ehrichs, A.L. de Lozanne: Direct writing of submicron metallic features with a scanning tunnelling microscope, Appl. Phys. Lett. 51, 247–249 (1987)

    Article  CAS  Google Scholar 

  43. A. Kobayashi, F. Grey, R.S. Williams, M. Ano: Formation of nanometer-scale grooves in silicon with a scanning tunneling microscope, Science 259, 1724–1726 (1993)

    Article  CAS  Google Scholar 

  44. B. Parkinson: Layer-by-layer nanometer scale etching of two-dimensional substrates using the scanning tunneling microscopy, J. Am. Chem. Soc. 112, 7498–7502 (1990)

    Article  CAS  Google Scholar 

  45. A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander: Nanometer-scale lithography using the atomic force microscope, Appl. Phys. Lett. 61, 2293–2295 (1992)

    Article  CAS  Google Scholar 

  46. B. Bhushan: Micro/Nanotribology and its applications to magnetic storage devices and MEMS, Tribol. Int. 28, 85–96 (1995)

    Article  CAS  Google Scholar 

  47. L. Tsau, D. Wang, K.L. Wang: Nanometer scale patterning of silicon(100) surface by an atomic force microscope operating in air, Appl. Phys. Lett. 64, 2133–2135 (1994)

    Article  CAS  Google Scholar 

  48. E. Delawski, B.A. Parkinson: Layer-by-layer etching of two-dimensional metal chalcogenides with the atomic force microscope, J. Am. Chem. Soc. 114, 1661–1667 (1992)

    Article  CAS  Google Scholar 

  49. B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–458 (1991)

    Article  Google Scholar 

  50. O. Marti, B. Drake, P.K. Hansma: Atomic force microscopy of liquid-covered surfaces: atomic resolution images, Appl. Phys. Lett. 51, 484–486 (1987)

    Article  CAS  Google Scholar 

  51. B. Drake, C.B. Prater, A.L. Weisenhorn, S.A.C. Gould, T.R. Albrecht, C.F. Quate, D.S. Cannell, H.G. Hansma, P.K. Hansma: Imaging crystals, polymers and processes in water with the atomic force microscope, Science 243, 1586–1589 (1989)

    Article  CAS  Google Scholar 

  52. M. Binggeli, R. Christoph, H.E. Hintermann, J. Colchero, O. Marti: Friction force measurements on potential controlled graphite in an electrolytic environment, Nanotechnology 4, 59–63 (1993)

    Article  CAS  Google Scholar 

  53. G. Meyer, N.M. Amer: Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53, 1045–1047 (1988)

    Article  Google Scholar 

  54. J.H. Coombs, J.B. Pethica: Properties of vacuum tunneling currents: Anomalous barrier heights, IBM J. Res. Dev. 30, 455–459 (1986)

    CAS  Google Scholar 

  55. M.D. Kirk, T. Albrecht, C.F. Quate: Low-temperature atomic force microscopy, Rev. Sci. Instrum. 59, 833–835 (1988)

    Article  Google Scholar 

  56. F.J. Giessibl, Ch. Gerber, G. Binnig: A low-temperature atomic force/scanning tunneling microscope for ultrahigh vacuum, J. Vacuum Sci. Technol. B 9, 984–988 (1991)

    Article  CAS  Google Scholar 

  57. T.R. Albrecht, P. Grutter, D. Rugar, D.P.E. Smith: Low temperature force microscope with all-fiber interferometer, Ultramicroscopy 42–44, 1638–1646 (1992)

    Article  Google Scholar 

  58. H.J. Hug, A. Moser, Th. Jung, O. Fritz, A. Wadas, I. Parashikor, H.J. Güntherodt: Low temperature magnetic force microscopy, Rev. Sci. Instrum. 64, 2920–2925 (1993)

    Article  CAS  Google Scholar 

  59. C. Basire, D.A. Ivanov: Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: Time-resolved hot-stage SPM study, Phys. Rev. Lett. 85, 5587–5590 (2000)

    Article  CAS  Google Scholar 

  60. H. Liu, B. Bhushan: Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains, Ultramicroscopy 91, 185–202 (2002)

    Article  CAS  Google Scholar 

  61. J. Foster, J. Frommer: Imaging of liquid crystal using a tunneling microscope, Nature 333, 542–547 (1988)

    Article  Google Scholar 

  62. D. Smith, H. Horber, C. Gerber, G. Binnig: Smectic liquid crystal monolayers on graphite observed by scanning tunneling microscopy, Science 245, 43–45 (1989)

    Article  CAS  Google Scholar 

  63. D. Smith, J. Horber, G. Binnig, H. Nejoh: Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy, Nature 344, 641–644 (1990)

    Article  CAS  Google Scholar 

  64. Y. Andoh, S. Oguchi, R. Kaneko, T. Miyamoto: Evaluation of very thin lubricant films, J. Phys. D 25, A71–A75 (1992)

    Article  CAS  Google Scholar 

  65. Y. Martin, C.C. Williams, H.K. Wickramasinghe: Atomic force microscope-force mapping and profiling on a sub 100-A scale, J. Appl. Phys. 61, 4723–4729 (1987)

    Article  CAS  Google Scholar 

  66. J.E. Stern, B.D. Terris, H.J. Mamin, D. Rugar: Deposition and imaging of localized charge on insulator surfaces using a force microscope, Appl. Phys. Lett. 53, 2717–2719 (1988)

    Article  Google Scholar 

  67. K. Yamanaka, H. Ogisco, O. Kolosov: Ultrasonic force microscopy for nanometer resolution subsurface imaging, Appl. Phys. Lett. 64, 178–180 (1994)

    Article  CAS  Google Scholar 

  68. K. Yamanaka, E. Tomita: Lateral force modulation atomic force microscope for selective imaging of friction forces, Jpn. J. Appl. Phys. 34, 2879–2882 (1995)

    Article  CAS  Google Scholar 

  69. U. Rabe, K. Janser, W. Arnold: Vibrations of free and surface-coupled atomic force microscope: Theory and experiment, Rev. Sci. Instrum. 67, 3281–3293 (1996)

    Article  CAS  Google Scholar 

  70. Y. Martin, H.K. Wickramasinghe: Magnetic imaging by force microscopy with 1000 Å resolution, Appl. Phys. Lett. 50, 1455–1457 (1987)

    Article  Google Scholar 

  71. D. Rugar, H.J. Mamin, P. Guethner, S.E. Lambert, J.E. Stern, I. McFadyen, T. Yogi: Magnetic force microscopy – General principles and application to longitudinal recording media, J. Appl. Phys. 63, 1169–1183 (1990)

    Article  Google Scholar 

  72. C. Schoenenberger, S.F. Alvarado: Understanding magnetic force microscopy, Z. Phys. B 80, 373–383 (1990)

    Article  Google Scholar 

  73. U. Hartmann: Magnetic force microscopy, Annu. Rev. Mater. Sci. 29, 53–87 (1999)

    Article  CAS  Google Scholar 

  74. D.W. Pohl, W. Denk, M. Lanz: Optical stethoscopy-image recording with resolution lambda/20, Appl. Phys. Lett. 44, 651–653 (1984)

    Article  Google Scholar 

  75. E. Betzig, J.K. Troutman, T.D. Harris, J.S. Weiner, R.L. Kostelak: Breaking the diffraction barrier – optical microscopy on a nanometric scale, Science 251, 1468–1470 (1991)

    Article  Google Scholar 

  76. E. Betzig, P.L. Finn, J.S. Weiner: Combined shear force and near-field scanning optical microscopy, Appl. Phys. Lett. 60, 2484 (1992)

    Article  CAS  Google Scholar 

  77. P.F. Barbara, D.M. Adams, D.B. O’Connor: Characterization of organic thin film materials with near-field scanning optical microscopy (NSOM), Annu. Rev. Mater. Sci. 29, 433–469 (1999)

    Article  CAS  Google Scholar 

  78. C.C. Williams, H.K. Wickramasinghe: Scanning thermal profiler, Appl. Phys. Lett. 49, 1587–1589 (1986)

    Article  Google Scholar 

  79. C.C. Williams, H.K. Wickramasinghe: Microscopy of chemical-potential variations on an atomic scale, Nature 344, 317–319 (1990)

    Article  CAS  Google Scholar 

  80. A. Majumdar: Scanning thermal microscopy, Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Article  CAS  Google Scholar 

  81. O.E. Husser, D.H. Craston, A.J. Bard: Scanning electrochemical microscopy – high resolution deposition and etching of materials, J. Electrochem. Soc. 136, 3222–3229 (1989)

    Article  CAS  Google Scholar 

  82. Y. Martin, D.W. Abraham, H.K. Wickramasinghe: High-resolution capacitance measurement and potentiometry by force microscopy, Appl. Phys. Lett. 52, 1103–1105 (1988)

    Article  Google Scholar 

  83. M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe: Kelvin probe force microscopy, Appl. Phys. Lett. 58, 2921–2923 (1991)

    Article  Google Scholar 

  84. J.M.R. Weaver, D.W. Abraham: High resolution atomic force microscopy potentiometry, J. Vacuum Sci. Technol. B 9, 1559–1561 (1991)

    Article  CAS  Google Scholar 

  85. D. DeVecchio, B. Bhushan: Use of a nanoscale Kelvin probe for detecting wear precursors, Rev. Sci. Instrum. 69, 3618–3624 (1998)

    Article  CAS  Google Scholar 

  86. B. Bhushan, A.V. Goldade: Measurements and analysis of surface potential change during wear of single-crystal silicon (100) at ultralow loads using Kelvin probe microscopy, Appl. Surf. Sci. 157, 373–381 (2000)

    Article  CAS  Google Scholar 

  87. P.K. Hansma, B. Drake, O. Marti, S.A.C. Gould, C.B. Prater: The scanning ion-conductance microscope, Science 243, 641–643 (1989)

    Article  CAS  Google Scholar 

  88. C.B. Prater, P.K. Hansma, M. Tortonese, C.F. Quate: Improved scanning ion-conductance microscope using microfabricated probes, Rev. Sci. Instrum. 62, 2634–2638 (1991)

    Article  CAS  Google Scholar 

  89. J. Matey, J. Blanc: Scanning capacitance microscopy, J. Appl. Phys. 57, 1437–1444 (1985)

    Article  Google Scholar 

  90. C.C. Williams: Two-dimensional dopant profiling by scanning capacitance microscopy, Annu. Rev. Mater. Sci. 29, 471–504 (1999)

    Article  CAS  Google Scholar 

  91. D.T. Lee, J.P. Pelz, B. Bhushan: Instrumentation for direct, low frequency scanning capacitance microscopy, and analysis of position dependent stray capacitance, Rev. Sci. Instrum. 73, 3523–3533 (2002)

    Google Scholar 

  92. P.K. Hansma, J. Tersoff: Scanning tunneling microscopy, J. Appl. Phys. 61, R1–R23 (1987)

    Article  CAS  Google Scholar 

  93. I. Giaever: Energy gap in superconductors measured by electron tunneling, Phys. Rev. Lett. 5, 147–148 (1960)

    Article  Google Scholar 

  94. D. Sarid, V. Elings: Review of scanning force microscopy, J. Vacuum Sci. Technol. B 9, 431–437 (1991)

    Article  CAS  Google Scholar 

  95. U. Durig, O. Zuger, A. Stalder: Interaction force detection in scanning probe microscopy: Methods and applications, J. Appl. Phys. 72, 1778–1797 (1992)

    Article  Google Scholar 

  96. J. Frommer: Scanning tunneling microscopy and atomic force microscopy in organic chemistry, Angew. Chem. Int. Ed. 31, 1298–1328 (1992)

    Article  Google Scholar 

  97. H.J. Güntherodt, R. Wiesendanger (eds): Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Adsorbate-Covered Surfaces (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  98. R. Wiesendanger, H.J. Güntherodt (eds): Scanning Tunneling Microscopy, II: Further Applications and Related Scanning Techniques (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  99. D.A. Bonnell (ed): Scanning Tunneling Microscopy and Spectroscopy – Theory, Techniques, and Applications (VCH, New York 1993)

    Google Scholar 

  100. O. Marti, M. Amrein (eds): STM and SFM in Biology (Academic, San Diego 1993)

    Google Scholar 

  101. J.A. Stroscio, W.J. Kaiser (eds): Scanning Tunneling Microscopy (Academic, Boston 1993)

    Google Scholar 

  102. H.J. Güntherodt, D. Anselmetti, E. Meyer (eds): Forces in Scanning Probe Methods (Kluwer, Dordrecht 1995)

    Google Scholar 

  103. G. Binnig, H. Rohrer: Scanning tunnelling microscopy, Surf. Sci. 126, 236–244 (1983)

    Article  CAS  Google Scholar 

  104. B. Bhushan, J. Ruan, B.K. Gupta: A scanning tunnelling microscopy study of fullerene films, J. Phys. D 26, 1319–1322 (1993)

    Article  CAS  Google Scholar 

  105. R.L. Nicolaides, W.E. Yong, W.F. Packard, H.A. Zhou: Scanning tunneling microscope tip structures, J. Vacuum Sci. Technol. A 6, 445–447 (1988)

    Article  CAS  Google Scholar 

  106. J.P. Ibe, P.P. Bey, S.L. Brandon, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton: On the electrochemical etching of tips for scanning tunneling microscopy, J. Vacuum Sci. Technol. A 8, 3570–3575 (1990)

    Article  CAS  Google Scholar 

  107. R. Kaneko, S. Oguchi: Ion-implanted diamond tip for a scanning tunneling microscope, Jpn. J. Appl. Phys. 28, 1854–1855 (1990)

    Article  Google Scholar 

  108. F.J. Giessibl: Atomic resolution of the silicon(111)–(7 × 7) surface by atomic force microscopy, Science 267, 68–71 (1995)

    Article  CAS  Google Scholar 

  109. B. Anczykowski, D. Krueger, K.L. Babcock, H. Fuchs: Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66, 251–259 (1996)

    Article  CAS  Google Scholar 

  110. T.R. Albrecht and C.F. Quate: Atomic resolution imaging of a nonconductor by atomic force microscopy, J. Appl. Phys. 62, 2599–2602 (1987)

    Article  CAS  Google Scholar 

  111. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P.K. Hansma: An atomic-resolution atomic-force microscope implemented using an optical lever, J. Appl. Phys. 65, 164–167 (1989)

    Article  CAS  Google Scholar 

  112. G. Meyer, N.M. Amer: Optical-beam-deflection atomic force microscopy: The NaCl(001) surface, Appl. Phys. Lett. 56, 2100–2101 (1990)

    Article  CAS  Google Scholar 

  113. A.L. Weisenhorn, M. Egger, F. Ohnesorge, S.A.C. Gould, S.P. Heyn, H.G. Hansma, R.L. Sinsheimer, H.E. Gaub, P.K. Hansma: Molecular resolution images of Langmuir–Blodgett films and DNA by atomic force microscopy, Langmuir 7, 8–12 (1991)

    Article  CAS  Google Scholar 

  114. J. Ruan, B. Bhushan: Atomic-scale and microscale friction of graphite and diamond using friction force microscopy, J. Appl. Phys. 76, 5022–5035 (1994)

    Article  CAS  Google Scholar 

  115. D. Rugar, P.K. Hansma: Atomic force microscopy, Phys. Today 43, 23–30 (1990)

    Article  CAS  Google Scholar 

  116. D. Sarid: Scanning Force Microscopy (Oxford Univ. Press, Oxford 1991)

    Google Scholar 

  117. G. Binnig: Force microscopy, Ultramicroscopy 42–44, 7–15 (1992)

    Article  Google Scholar 

  118. E. Meyer: Atomic force microscopy, Surf. Sci. 41, 3–49 (1992)

    Article  CAS  Google Scholar 

  119. H.K. Wickramasinghe: Progress in scanning probe microscopy, Acta Mater. 48, 347–358 (2000)

    Article  CAS  Google Scholar 

  120. A.J. den Boef: The influence of lateral forces in scanning force microscopy, Rev. Sci. Instrum. 62, 88–92 (1991)

    Article  CAS  Google Scholar 

  121. M. Radmacher, R.W. Tillman, M. Fritz, H.E. Gaub: From molecules to cells: Imaging soft samples with the atomic force microscope, Science 257, 1900–1905 (1992)

    Article  CAS  Google Scholar 

  122. F. Ohnesorge, G. Binnig: True atomic resolution by atomic force microscopy through repulsive and attractive forces, Science 260, 1451–1456 (1993)

    Article  CAS  Google Scholar 

  123. G. Neubauer, S.R. Coben, G.M. McClelland, D. Horne, C.M. Mate: Force microscopy with a bidirectional capacitance sensor, Rev. Sci. Instrum. 61, 2296–2308 (1990)

    Article  CAS  Google Scholar 

  124. T. Goddenhenrich, H. Lemke, U. Hartmann, C. Heiden: Force microscope with capacitive displacement detection, J. Vacuum Sci. Technol. A 8, 383–387 (1990)

    Article  Google Scholar 

  125. U. Stahl, C.W. Yuan, A.L. Delozanne, M. Tortonese: Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope, Appl. Phys. Lett. 65, 2878–2880 (1994)

    Article  CAS  Google Scholar 

  126. R. Kassing, E. Oesterschulze: Sensors for scanning probe microscopy. In: Micro/Nanotribology and Its Applications, ed. by B. Bhushan (Kluwer, Dordrecht 1997) pp.35–54

    Google Scholar 

  127. C.M. Mate: Atomic-force-microscope study of polymer lubricants on silicon surfaces, Phys. Rev. Lett. 68, 3323–3326 (1992)

    Article  CAS  Google Scholar 

  128. S.P. Jarvis, A. Oral, T.P. Weihs, J.B. Pethica: A novel force microscope and point contact probe, Rev. Sci. Instrum. 64, 3515–3520 (1993)

    Article  CAS  Google Scholar 

  129. D. Rugar, H.J. Mamin, P. Guethner: Improved fiber-optical interferometer for atomic force microscopy, Appl. Phys. Lett. 55, 2588–2590 (1989)

    Article  CAS  Google Scholar 

  130. C. Schoenenberger, S.F. Alvarado: A differential interferometer for force microscopy, Rev. Sci. Instrum. 60, 3131–3135 (1989)

    Article  CAS  Google Scholar 

  131. D. Sarid, D. Iams, V. Weissenberger, L.S. Bell: Compact scanning-force microscope using laser diode, Opt. Lett. 13, 1057–1059 (1988)

    CAS  Google Scholar 

  132. N.W. Ashcroft, N.D. Mermin: Solid State Physics (Holt Reinhart and Winston, New York 1976)

    Google Scholar 

  133. G. Binnig, D.P.E. Smith: Single-tube three-dimensional scanner for scanning tunneling microscopy, Rev. Sci. Instrum. 57, 1688 (1986)

    Article  CAS  Google Scholar 

  134. S.I. Park, C.F. Quate: Digital filtering of STM images, J. Appl. Phys. 62, 312 (1987)

    Article  Google Scholar 

  135. J.W. Cooley, J.W. Tukey: An algorithm for machine calculation of complex Fourier series, Math. Comput. 19, 297 (1965)

    Article  Google Scholar 

  136. J. Ruan, B. Bhushan: Atomic-scale friction measurements using friction force microscopy: Part I – General principles and new measurement techniques, ASME J. Tribol. 116, 378–388 (1994)

    CAS  Google Scholar 

  137. T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate: Microfabrication of cantilever styli for the atomic force microscope, J. Vacuum Sci. Technol. A 8, 3386–3396 (1990)

    Article  CAS  Google Scholar 

  138. O. Marti, S. Gould, P.K. Hansma: Control electronics for atomic force microscopy, Rev. Sci. Instrum. 59, 836–839 (1988)

    Article  Google Scholar 

  139. O. Wolter, T. Bayer, J. Greschner: Micromachined silicon sensors for scanning force microscopy, J. Vacuum Sci. Technol. B 9, 1353–1357 (1991)

    Article  CAS  Google Scholar 

  140. E. Meyer, R. Overney, R. Luthi, D. Brodbeck: Friction force microscopy of mixed Langmuir–Blodgett films, Thin Solid Films 220, 132–137 (1992)

    Article  CAS  Google Scholar 

  141. H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)

    Article  CAS  Google Scholar 

  142. J.H. Hafner, C.L. Cheung, A.T. Woolley, C.M. Lieber: Structural and functional imaging with carbon nanotube AFM probes, Prog. Biophys. Mol. Biol. 77, 73–110 (2001)

    Article  CAS  Google Scholar 

  143. G.S. Blackman, C.M. Mate, M.R. Philpott: Interaction forces of a sharp tungsten tip with molecular films on silicon surface, Phys. Rev. Lett. 65, 2270–2273 (1990)

    Article  CAS  Google Scholar 

  144. S.J. O’Shea, M.E. Welland, T. Rayment: Atomic force microscope study of boundary layer lubrication, Appl. Phys. Lett. 61, 2240–2242 (1992)

    Article  CAS  Google Scholar 

  145. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)

    Article  CAS  Google Scholar 

  146. D.W. Pohl: Some design criteria in STM, IBM J. Res. Dev. 30, 417 (1986)

    CAS  Google Scholar 

  147. W.T. Thomson, M.D. Dahleh: Theory of Vibration with Applications, 5th edn. (Prentice Hall, Upper Saddle River 1998)

    Google Scholar 

  148. J. Colchero: Reibungskraftmikroskopie. Ph.D. Thesis (University of Konstanz, Konstanz 1993)

    Google Scholar 

  149. G.M. McClelland, R. Erlandsson, S. Chiang: Atomic force microscopy: General principles and a new implementation. In: Review of Progress in Quantitative Nondestructive Evaluation, Vol.6B, ed. by D.O. Thompson, D.E. Chimenti (Plenum, New York 1987) pp.1307–1314

    Google Scholar 

  150. Y.R. Shen: The Principles of Nonlinear Optics (Wiley, New York 1984)

    Google Scholar 

  151. T. Baumeister, S.L. Marks: Standard Handbook for Mechanical Engineers, 7th edn. (McGraw-Hill, New York 1967)

    Google Scholar 

  152. J. Colchero, O. Marti, H. Bielefeldt, J. Mlynek: Scanning force and friction microscopy, Phys. Stat. Sol. 131, 73–75 (1991)

    Article  Google Scholar 

  153. R. Young, J. Ward, F. Scire: Observation of metal-vacuum-metal tunneling, field emission, and the transition region, Phys. Rev. Lett. 27, 922 (1971)

    Article  CAS  Google Scholar 

  154. R. Young, J. Ward, F. Scire: The topographiner: An instrument for measuring surface microtopography, Rev. Sci. Instrum. 43, 999 (1972)

    Article  Google Scholar 

  155. C. Gerber, O. Marti: Magnetostrictive positioner, IBM Tech. Discl. Bull. 27, 6373 (1985)

    Google Scholar 

  156. R. Garcìa Cantù, M.A. Huerta Garnica: Long-scan imaging by STM, J. Vacuum Sci. Technol. A 8, 354 (1990)

    Article  Google Scholar 

  157. C.J. Chen: In situ testing and calibration of tube piezoelectric scanners, Ultramicroscopy 42–44, 1653–1658 (1992)

    Article  Google Scholar 

  158. R.G. Carr: Finite element analysis of PZT tube scanner motion for scanning tunnelling microscopy, J. Microsc. 152, 379–385 (1988)

    Google Scholar 

  159. C.J. Chen: Electromechanical deflections of piezoelectric tubes with quartered electrodes, Appl. Phys. Lett. 60, 132 (1992)

    Article  Google Scholar 

  160. N. Libioulle, A. Ronda, M. Taborelli, J.M. Gilles: Deformations and nonlinearity in scanning tunneling microscope images, J. Vacuum Sci. Technol. B 9, 655–658 (1991)

    Article  Google Scholar 

  161. E.P. Stoll: Restoration of STM images distorted by time-dependent piezo driver aftereffects, Ultramicroscopy 42–44, 1585–1589 (1991)

    Google Scholar 

  162. R. Durselen, U. Grunewald, W. Preuss: Calibration and applications of a high precision piezo scanner for nanometrology, Scanning 17, 91–96 (1995)

    Google Scholar 

  163. J. Fu: In situ testing and calibrating of Z-piezo of an atomic force microscope, Rev. Sci. Instrum. 66, 3785–3788 (1995)

    Article  CAS  Google Scholar 

  164. R.C. Barrett, C.F. Quate: Optical scan-correction system applied to atomic force microscopy, Rev. Sci. Instrum. 62, 1393 (1991)

    Article  CAS  Google Scholar 

  165. R. Toledo-Crow, P.C. Yang, Y. Chen, M. Vaez-Iravani: Near-field differential scanning optical microscope with atomic force regulation, Appl. Phys. Lett. 60, 2957–2959 (1992)

    Article  CAS  Google Scholar 

  166. J.E. Griffith, G.L. Miller, C.A. Green: A scanning tunneling microscope with a capacitance-based position monitor, J. Vacuum Sci. Technol. B 8, 2023–2027 (1990)

    Article  Google Scholar 

  167. A.E. Holman, C.D. Laman, P.M.L.O. Scholte, W.C. Heerens, F. Tuinstra: A calibrated scanning tunneling microscope equipped with capacitive sensors, Rev. Sci. Instrum. 67, 2274–2280 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Marti, O. (2008). Scanning Probe Microscopy – Principle of Operation, Instrumentation, and Probes. In: Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77608-6_2

Download citation

Publish with us

Policies and ethics