Skip to main content

Colonisation and bioerosion of marine bivalve shells from the Baltic Sea by euendolithic cyanobacteria: an experimental study

  • Chapter
Current Developments in Bioerosion

Abstract

The destructive activity of different euendolithic cyanobacteria on marine bivalve shells typical for the Baltic Sea area, such as Mytilus edulis, Mya arenaria, Cerastoderma glaucum, and Macoma balthica, was studied in experimental settings for four months. Specifically the cyanobacterial strains of Phormidium sp., Microcoleus chthonoplastes, Anabaena flos-aquae and Synechococcus sp. – all of which not classically considered as euendolithic – were cultured under controlled conditions in the laboratory to determine their optimal environmental conditions. Each bivalve species was maintained in four experimental settings with different calcium carbonate contents in both sediment and sea water. After four months of exposure, pieces of shells were collected, thin-sectioned, and examined using scanning electron microscopy (SEM) and light microscopy. The cyanobacterial strains of Phormidium sp. and Microcoleus chthonoplastes exhibited the fastest (after two weeks) colonisation of Mya arenaria and Cerastoderma glaucum shells and formed a dense biofilm in systems with decalcified sand and carbonate-free water. Shells of Mytilus edulis were colonised only in sites where the periostracum was damaged suggesting periostracal protective properties against the destruction of calcium carbonate substrate by dissolution and bioerosion. The examination of SEM images and cross-sections revealed Phormidium sp. to be an active euendolith that produces prominent traces under laboratory conditions whereas signs of boring activity for Microcoleus chthonoplastes, Anabaena flos-aquae were inconclusive and Synechococcus sp. did not contribute to bioerosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandersson ET (1974) Carbonate cementation in coralline algal nodules in the Skagerrak, North Sea: biochemical precipitation in undersaturated waters. J Sediment Petrol 44:7- 26

    Google Scholar 

  • Anagnostidis, Komarek J (1988) Modern approach to the classification system of cyanophytes. 3-Oscillatoriales. Arch Hydrobiol, Suppl 80, Algol Stud 50-53:327-472

    Google Scholar 

  • Aristovskaya TV (1980) Microbiology of soil formation. In: Gorbushina AA, Palinska KA (eds) Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria. Aerobiologia 15:183-191

    Google Scholar 

  • Aristovskaya TV, Daragan AY, Zykina LV, Kutuzova RS (1969) Microbiological factors in the movement of some mineral elements in the soil. Sov Soil Sci 5:538-546

    Google Scholar 

  • Bathurst RGC (1976) Carbonate sediments and their diagenesis. Elsevier, New York, 658 pp

    Google Scholar 

  • Bornet, Flahault C (1888) Note sur deux nouveaux genres d’algues perforantes. J Bot, Morot 2:161-165

    Google Scholar 

  • Bornet, Flahault C (1889) Sur quelques plantes vivant dans le test calcaires des mollusques. Bull Soc Bot France 36:147-179

    Google Scholar 

  • Brehm, Gorbushina A, Mottershead D (2005) The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr Palaeoclimatol Palaeoecol 219:117-129

    Article  Google Scholar 

  • Bruggemann JH, van Oppen MJH, Breeman AM (1994) Foraging by the stoplight parrotfish Sparisoma viride. I. Food selection in different, socially determined habitats. Mar Ecol Prog Ser 106:41-55

    Article  Google Scholar 

  • Ercegovic A (1932) Ekoloske i socioloske studije o litofitskim cijanoficejama sa Jugoslavenske obale Jadrana. Bull Int Acad Yougoslave Sci Math Nat 26:129-220

    Google Scholar 

  • Feldmann, McKenzie JA (1998) Stromatolite - thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201-212

    Article  Google Scholar 

  • Ferris FG, Lowson EA (1997) Ultrastructure and geochemistry of endolithic microorganisms in limestone of the Niagara Escarpment. Canad J Microbiol 43:211-219

    Article  Google Scholar 

  • Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol 185:205-213

    Article  Google Scholar 

  • Gerdes, Krumbein WE, Reineck H-E (1986) Mellum. Portrait einer Insel. Kramer, Frankfurt, Senckenberg B 63, 344 pp

    Google Scholar 

  • Ghirardelli LA (2002) Endolithic microorganisms in live and dead thalli of coralline red algae (Corallinales, Rhodophyta) in the northern Adriatic Sea. Acta Geol Hisp 37: 53-60

    Google Scholar 

  • Glaub I (2004) Recent and sub-recent microborings from the upwelling area off Mauritania (West Africa) and their implications for palaeoecology. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc London, Spec Publ 228:63-77

    Google Scholar 

  • Glaub, Gektidis M, Vogel K (2002) Microborings from different North Atlantic shelf areas - variability of the euphotic zone extension and implications for paleodepth reconstructions. Courier Forschinst Senckenberg 237:25-37

    Google Scholar 

  • Golubic, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Stud Environ Sci 3:29-45

    Google Scholar 

  • Golubic, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475-478

    Google Scholar 

  • Gomont M (1892) Monographie des Oscillariées. Ann Sci Nat Bot 15:263-368 and 16:91-264

    Google Scholar 

  • Gorbushina AA, Palinska KA (1999) Biodeteriorative processes on glass: experimental proof of the role of fungi and cyanobacteria. Aerobiologia 15:183-191

    Article  Google Scholar 

  • Harper EM, Skelton PW (1993) A defensive value of the thickened periostracum in Mytiloidea. Veliger 36:36-42

    Google Scholar 

  • Hutchings PA (1986) Biological destruction of coral reefs. Coral Reef 4:239-252

    Article  Google Scholar 

  • Kaehler S (1999) Incidence and distribution of phototrophic shell-degrading endoliths of the brown mussel Perna perna. Mar Biol 135:505-514

    Article  Google Scholar 

  • Kardon G (1998) Evidence from the fossil record of an antipredatory exaptation:conchiolin layers in corbulid bivalves. Evolution 52:68-79

    Article  Google Scholar 

  • Kawaguchi, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Crystal Growth 240:230-235

    Article  Google Scholar 

  • Knauth-Koehler K, Albers BP, Krumbein WE (1996) Microbial mineralization of organic carbon and dissolution of inorganic carbon from mussel shells (Mytilus edulis). Senckenbergiana Marit 26:157-165

    Google Scholar 

  • Kobayashi, Samata T (2006) Bivalve shell structure and organic matrix. Mater Sci Eng C 26:692-698

    Article  Google Scholar 

  • Kobluk DR, Risk JM (1977) Micritization and carbonate-grain binding by endolithic algae. Bull Amer Assoc Petroleum Geol 61:1069-1082

    Google Scholar 

  • Lagerheim G (1886) Notes sur le Mastigocoleus, nouveau genre des algues marines de l’ordre des Phycochromacées. Notarisia 1:65-69

    Google Scholar 

  • Le Campion-Alsumard T, Golubic S, Hutchings PA (1995) Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser 117:149-157

    Article  Google Scholar 

  • Mao Che L, Le Campion-Alsumard T, Boury-Esnault N, Payri C, Golubic S, Bézac C (1996) Biodegradation of shells of the black pearl oyster, Pinctada margaritifera var. cumingii by microborers and sponges of French Polynesia. Mar Biol 126:509-519

    Article  Google Scholar 

  • Morse JW (2003) Formation and diagenesis of carbonate sediments. In: Holland HD,

    Google Scholar 

  • Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, 7:67-86

    Google Scholar 

  • Nägeli C (1849) Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. N Denkschr Schweiz Ges Natw 8:44-60

    Google Scholar 

  • Pantazidou, Louvrou I, Economou-Amilli A (2006) Euendolithic shell-boring cyanobacteria and chlorophytes from the saline lagoon Ahivadolimni on Milos Island, Greece. Europ J Phycol 41:189-200

    Article  Google Scholar 

  • Perry CT, Macdonald IA (2002) Impact of light penetration on the bathymetry of reef microboring communities: implications for the development of microendolithic trace assemblages. Palaeogeogr Palaeoclimatol Palaeoecol 186:101-113

    Article  Google Scholar 

  • Pia J (1937) Die kalklösenden Thallophyten. Arch Hydrobiol 31:264-328 and 341-398

    Google Scholar 

  • Pli#x000F1;ski M, Kom#x000E1;rek J (2007) Flora Zatoki Gda#x000F1;skiej i w#x000F3;d przyleglslash;ych (Balslash;tyk Polslash;udniowy). 1. Sinice - Cyanobakterie (Cyanoprokaryota). Gda#x000F1;sk Univ Publ House, Gda#x000F1;sk, 186 pp

    Google Scholar 

  • Poiret JLM (1789) Voyage en Barbarie, ou lettres écrites de l’ancienne Numidie pendant les années 1785 et 1786. La Rochelle, Paris, 315 pp

    Google Scholar 

  • Radtke, Golubic S (2005) Microborings in mollusk shells, Bay of Safaga, Egypt: Morphometry and ichnology. Facies 51:125-141

    Article  Google Scholar 

  • Rippka, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1- 61

    Google Scholar 

  • Schneider, Torunski H (1983) Biokarst on limestone coasts, morphogenesis and sediment production. Mar Ecol 4:45-63

    Article  Google Scholar 

  • Schneider, Le Campion-Alsumard T (1999) Construction and destruction of carbonates by marine and freshwater cyanobacteria. Europ J Phycol 34:417-426

    Article  Google Scholar 

  • Smith AM, Nelson CS (2003) Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Sci Rev 63:1-31

    Article  Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31-43

    Article  Google Scholar 

  • Stal LJ (1994) Microbial mats: Ecophysiological interactions related to biogenic sediment stabilisation. In: Krumbein WE, Paterson DM, Stal LJ (eds) Biostabilization of sediments. Oldenburg Univ, Oldenburg, pp 41-53

    Google Scholar 

  • Stal LJ (2000) Microbial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: Their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61-120

    Google Scholar 

  • Stone AT (1997) Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces. In: Banfield JF, Nealson KH (eds) Geomicrobiology: Interactions between microbes and minerals. Rev Mineral 35:309-344

    Google Scholar 

  • Tribollet, Golubic S (2005) Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24:422-434

    Article  Google Scholar 

  • Tribollet, Payri C (2001) Bioerosion of the crustose coralline alga Hydrolithon onkodes by microborers in the coral reefs of Moorea, French Polynesia. Oceanolog Acta 24:329- 342

    Article  Google Scholar 

  • Wisshak M (2006) High-latitude bioerosion: the Kosterfjord experiment. Lect Notes Earth Sci 109:1-202

    Article  Google Scholar 

  • Wisshak, Gektidis M, Freiwald A, Lundälv T (2005) Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51:93-117

    Article  Google Scholar 

  • Young HR, Nelson CS (1988) Endolithic biodegradation of temperate-water skeletal carbonates by boring sponges on the Scott shelf, British Columbia, Canada. Mar Geo 65:33-45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pawłowska, A.M., Paliñska, K.A., Piekarek-Jankowska, H. (2008). Colonisation and bioerosion of marine bivalve shells from the Baltic Sea by euendolithic cyanobacteria: an experimental study. In: Wisshak, M., Tapanila, L. (eds) Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_6

Download citation

Publish with us

Policies and ethics