Skip to main content

Regional Lung Function in Critically Ill Neonates: A New Perspective for Electrical Impedance Tomography

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 2008))

Abstract

Electrical impedance tomography (EIT) is an emerging, radiation-free, medical imaging modality considered to become a bedside monitoring tool of regional lung function in intensive care patients [1]–[9]. This method could be used not only in adult but also in neonatal and pediatric patients. The perspective of EIT in the latter patient group is mainly based on: 1) the lack of information on regional lung function at the bedside; and 2) deficits in available diagnostic and monitoring techniques to provide this information. Bedside monitoring of regional lung function is needed because most critically ill neonates require either invasive or non-invasive ventilatory support, their lung tissue is immature and prone to development of irreversible damage and chronic lung disease, pathological processes in the lungs are not uniform, and therapeutic measures (e.g., surfactant or ventilator therapy) may exhibit regionally heterogeneous effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold JH (2004) Electrical impedance tomography: on the path to the Holy Grail. Crit Care Med 32:894–895

    Article  PubMed  Google Scholar 

  2. Frerichs I (2000) Electrical impedance tomography (EIT) in applications related to lung and ventilation: a review of experimental and clinical activities. Physiol Meas 21:R1–21

    Article  CAS  PubMed  Google Scholar 

  3. Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316

    Article  PubMed  Google Scholar 

  4. Hedenstierna G (2004) Using electric impedance tomography to assess regional ventilation at the bedside. Am J Respir Crit Care Med 169:777–778

    Article  PubMed  Google Scholar 

  5. Hinz J, Hahn G, Neumann P, et al (2003) End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med 29:37–43

    CAS  PubMed  Google Scholar 

  6. Luepschen H, Meier T, Grossherr M, Leibecke T, Karsten J, Leonhardt S (2007) Protective ventilation using electrical impedance tomography. Physiol Meas 28:S247–260

    Article  CAS  PubMed  Google Scholar 

  7. Odenstedt H, Lindgren S, Olegard C, et al (2005) Slow moderate pressure recruitment maneuver minimizes negative circulatory and lung mechanic side effects: evaluation of recruitment maneuvers using electric impedance tomography. Intensive Care Med 31:1706–1714

    Article  PubMed  Google Scholar 

  8. Pillow JJ, Frerichs I, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol 41:105–121

    Article  PubMed  Google Scholar 

  9. Wolf GK, Arnold JH (2005) Noninvasive assessment of lung volume: respiratory inductance plethysmography and electrical impedance tomography. Crit Care Med 33:S163–169

    Article  PubMed  Google Scholar 

  10. Aurora P, Gustafsson P, Bush A, et al (2004) Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax 59:1068–1073

    Article  CAS  PubMed  Google Scholar 

  11. Schibler A, Hall GL, Businger F, et al (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918

    Article  CAS  PubMed  Google Scholar 

  12. Frerichs I, Hinz J, Herrmann P, et al (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666

    PubMed  Google Scholar 

  13. Hinz J, Neumann P, Dudykevych T, et al (2003) Regional ventilation by electrical impedance tomography: a comparison with ventilation scintigraphy in pigs. Chest 124:314–322

    Article  PubMed  Google Scholar 

  14. Kunst PW, Vonk Noordegraaf A, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490

    Google Scholar 

  15. Victorino JA, Borges JB, Okamoto VN, et al (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169: 791–800

    Article  PubMed  Google Scholar 

  16. Frerichs I, Schmitz G, Pulletz S, et al (2007) Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation. Physiol Meas 28:S261–267

    Article  CAS  PubMed  Google Scholar 

  17. Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ, Jackson MJ (2002) Neonatal lungs — can absolute lung resistivity be determined non-invasively? Med Biol Eng Comput 40:388–394

    Article  CAS  PubMed  Google Scholar 

  18. Brown BH, Primhak RA, Smallwood RH, Milnes P, Narracott AJ, Jackson MJ (2002) Neonatal lungs: maturational changes in lung resistivity spectra. Med Biol Eng Comput 40:506–511

    Article  CAS  PubMed  Google Scholar 

  19. Barber DC (1990) Quantification in impedance imaging. Clin Phys Physiol Meas 11(suppl A):45–56

    Article  PubMed  Google Scholar 

  20. Geddes LA, Baker LE (1967) The specific resistance of biological material-a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    Article  CAS  PubMed  Google Scholar 

  21. Barber DC (1989) A review of image reconstruction techniques for electrical impedance tomography. Med Phys 16:162–169

    Article  CAS  PubMed  Google Scholar 

  22. Dunlop S, Hough J, Riedel T, Fraser JF, Dunster K, Schibler A (2006) Electrical impedance tomography in extremely prematurely born infants and during high frequency oscillatory ventilation analyzed in the frequency domain. Physiol Meas 27:1151–1165

    Article  PubMed  Google Scholar 

  23. Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G (2001) Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 91:39–50

    CAS  PubMed  Google Scholar 

  24. Frerichs I, Hahn G, Hellige G (1999) Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging 18:764–773

    Article  CAS  PubMed  Google Scholar 

  25. Frerichs I, Hahn G, Schroder T, Hellige G (1998) Electrical impedance tomography in monitoring experimental lung injury. Intensive Care Med 24:829–836

    Article  CAS  PubMed  Google Scholar 

  26. Hahn G, Sipinkova I, Baisch F, Hellige G (1995) Changes in the thoracic impedance distribution under different ventilatory conditions. Physiol Meas 16:A161–173

    Article  CAS  PubMed  Google Scholar 

  27. Meier T, Luepschen H, Karsten J, et al (2007) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med [Epub ahead of print]

    Google Scholar 

  28. Smallwood RH, Hampshire AR, Brown BH, Primhak RA, Marven S, Nopp P (1999) A comparison of neonatal and adult lung impedances derived from EIT images. Physiol Meas 20: 401–413

    Article  CAS  PubMed  Google Scholar 

  29. Helms P, Hulse MG, Hatch DJ (1982) Lung volume and lung mechanics in infancy lateral or supine posture? Pediatr Res 16:943–947

    Article  CAS  PubMed  Google Scholar 

  30. Larsson A, Jonmarker C, Lindahl SG, Werner O (1989) Lung function in the supine and lateral decubitus positions in anaesthetized infants and children. Br J Anaesth 62:378–384

    Article  CAS  PubMed  Google Scholar 

  31. Heaf DP, Helms P, Gordon I, Turner HM (1983) Postural effects on gas exchange in infants. N Engl J Med 308:1505–1508

    CAS  PubMed  Google Scholar 

  32. Davies H, Kitchman R, Gordon I, Helms P (1985) Regional ventilation in infancy. Reversal of adult pattern. N Engl J Med 313:1626–1628

    CAS  PubMed  Google Scholar 

  33. Frerichs I, Schiffmann H, Oehler R, et al (2003) Distribution of lung ventilation in spontaneously breathing neonates lying in different body positions. Intensive Care Med 29:787–794

    Article  PubMed  Google Scholar 

  34. Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: An electrical impedance tomography study. Intensive Care Med 32:1392–1398

    Article  PubMed  Google Scholar 

  35. Thach B (2001) Fast breaths, slow breaths, small breaths, big breaths: importance of vagal innervation in the newborn lung. J Appl Physiol 91:2298–2300

    CAS  PubMed  Google Scholar 

  36. Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann N Y Acad Sci 873:493–505

    Article  CAS  PubMed  Google Scholar 

  37. Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394

    Article  CAS  PubMed  Google Scholar 

  38. Hampshire AR, Smallwood RH, Brown BH, Primhak RA (1995) Multifrequency and parametric EIT images of neonatal lungs. Physiol Meas 16:A175–189

    Article  CAS  PubMed  Google Scholar 

  39. Taktak A, Spencer A, Record P, Gadd R, Rolfe P (1996) Feasibility of neonatal lung imaging using electrical impedance tomography. Early Human Development 44:131–138

    Article  CAS  PubMed  Google Scholar 

  40. Frerichs I, Schiffmann H, Hahn G, Dudykevych T, Just A, Hellige G (2005) Funktionelle elektrische Impedanztomographie — eine Methode zur bettsetigen Ueberwachung der regionalen Lungenfunktion. Intensivmed 42:66–73

    Google Scholar 

  41. Ainsworth SB, Milligan DW (2002) Surfactant therapy for respiratory distress syndrome in premature neonates: a comparative review. Am J Respir Med 1:417–433

    CAS  PubMed  Google Scholar 

  42. Rodriguez RJ (2003) Management of respiratory distress syndrome: an update. Respir Care 48:279–286

    PubMed  Google Scholar 

  43. Suresh GK, Soll RF (2005) Overview of surfactant replacement trials. J Perinatol 25(suppl 2): S40–44

    Article  CAS  PubMed  Google Scholar 

  44. Couser RJ, Ferrara TB, Wheeler W, et al (1993) Pulmonary follow-up 2.5 years after a randomized, controlled, multiple dose bovine surfactant study of preterm newborn infants. Pediatr Pulmonol 15:163–167

    Article  CAS  PubMed  Google Scholar 

  45. Mercier CE, Soll RF (1993) Clinical trials of natural surfactant extract in respiratory distress syndrome. Clin Perinatol 20:711–735

    CAS  PubMed  Google Scholar 

  46. Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC (2006) Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 174:772–779

    Article  PubMed  Google Scholar 

  47. Krause M, Olsson T, Law AB, et al (1997) Effect of volume recruitment on response to surfactant treatment in rabbits with lung injury. Am J Respir Crit Care Med 156:862–866

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frerichs, I., Scholz, J., Weiler, N. (2008). Regional Lung Function in Critically Ill Neonates: A New Perspective for Electrical Impedance Tomography. In: Yearbook of Intensive Care and Emergency Medicine. Yearbook of Intensive Care and Emergency Medicine, vol 2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77290-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77290-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77289-7

  • Online ISBN: 978-3-540-77290-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics