Sub-grid Detection in DNA Microarray Images

  • Luis Rueda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4872)


Analysis of DNA microarray images is a crucial step in gene expression analysis, as it influences the whole process for obtaining biological conclusions. When processing the underlying images, accurately separating the sub-grids is of supreme importance for subsequent steps. A method for separating the sub-grids is proposed, which aims to first, detect rotations in the images independently for the x and y axes, corrected by an affine transformation, and second, separate the corresponding sub-grids in the corrected image. Extensive experiments performed in various real-life microarray images from different sources show that the proposed method effectively detects and corrects the underlying rotations and accurately finds the sub-grid separations.


Microarray image gridding image analysis image feature and detectors 


  1. 1.
    Drăghici, S.: Data Analysis Tools for DNA Microarrays. Chapman & Hall (2003)Google Scholar
  2. 2.
    Schena, M.: Microarray Analysis. John Wiley & Sons, Chichester (2002)Google Scholar
  3. 3.
    Antoniol, G., Ceccarelli, M.: A markov random field approach to microarray image gridding. In: Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, pp. 550–553 (2004)Google Scholar
  4. 4.
    Brandle, N., Bischof, H., Lapp, H.: Robust dna microarray image analysis. Machine Vision and Applications 15, 11–28 (2003)CrossRefGoogle Scholar
  5. 5.
    Ceccarelli, B., Antoniol, G.: A deformable grid-matching approach for microarray images. IEEE Transactions on Image Processing 15(10), 3178–3188 (2006)CrossRefGoogle Scholar
  6. 6.
    Qi, F., Luo, Y., Hu, D.: Recognition of perspectively distorted planar grids. Pattern Recognition Letters 27(14), 1725–1731 (2006)CrossRefGoogle Scholar
  7. 7.
    Rueda, L., Vidyadharan, V.: A hill-climbing approach for automatic gridding of cdna microarray images. IEEE Transactions on Computational Biology and Bioinformatics 3(1), 72–83 (2006)CrossRefGoogle Scholar
  8. 8.
    Jain, A., Tokuyasu, T., Snijders, A., Segraves, R., Albertson, D., Pinkel, D.: Fully automatic quantification of microarray data. Genome Research 12(2), 325–332 (2002)CrossRefGoogle Scholar
  9. 9.
    Noordmans, H., Smeulders, A.: Detection and characterization of isolated and overlapping spots. Computer Vision and Image Understandigng 70(1), 23–35 (1998)CrossRefGoogle Scholar
  10. 10.
    Katzer, M., Kummer, F., Sagerer, G.: A markov random field model of microarray gridding. In: Proceedings of the 2003 ACM Symposium on Applied Computing, pp. 72–77 (2003)Google Scholar
  11. 11.
    Angulo, J., Serra, J.: Automatic analysis of dna microarray images using mathematicalmorphology. Bioinformatics 19(5), 553–562 (2003)CrossRefGoogle Scholar
  12. 12.
    Katzer, M., Kummert, F., Sagerer, G.: Automatische auswertung von mikroarraybildern. In: Proceedings of Workshop Bildverarbeitung für die Medizin, Cambridge, UK (2002)Google Scholar
  13. 13.
    Steinfath, M., Wruck, W., Seidel, H.: Automated image analysis for array hybridization experiments. Bioinformatics 17(7), 634–641 (2001)CrossRefGoogle Scholar
  14. 14.
    Wang, Y., Ma, M., Zhang, K., Shih, F.: A hierarchical refinement algorithm for fully automatic gridding in spotted dna microarray image processing. Information Sciences 177(4), 1123–1135 (2007)CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Shih, F., Ma, M.: Precise gridding of microarray images by detecting and correcting rotations in subarrays. In: Proceedings of the 8th Joint Conference on Information Sciences, Salt Lake City, USA, pp. 1195–1198 (2005)Google Scholar
  16. 16.
    Helgason, S.: The Radon Transform, 2nd edn. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  17. 17.
    Qin, L., Rueda, L., Ali, A., Ngom, A.: Spot detection and image segmentation in dna microarray data. Applied Bioinformatics 4(1), 1–12 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Luis Rueda
    • 1
  1. 1.Department of Computer Science, University of Concepción, Edmundo Larenas 215, Concepción, 4030000Chile

Personalised recommendations