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Abstract. Analysis of DNA microarray images is a crucial step in gene expres-
sion analysis, as it influences the whole process for obtaining biological conclu-
sions. When processing the underlying images, accurately separating the sub-
grids is of supreme importance for subsequent steps. A method for separating the
sub-grids is proposed, which aims to first, detect rotations in the images indepen-
dently for the x and y axes, corrected by an affine transformation, and second,
separate the corresponding sub-grids in the corrected image. Extensive experi-
ments performed in various real-life microarray images from different sources
show that the proposed method effectively detects and corrects the underlying
rotations and accurately finds the sub-grid separations.

Keywords: Microarray image gridding, image analysis, image feature and
detectors.

1 Introduction

One of the most important technologies used in molecular biology are microarrays.
They constitute a way to monitor gene expression in cells and organisms under specific
conditions, and have many applications. Microarrays are produced on a chip (slide) in
which DNA extracted from a tissue is hybridized with the one on the slide, typically in
two channels. The slide is then scanned at a very high resolution generating an image
composed of sub-grids of spots (in the case of cDNA microarrays) [1,2]. Image process-
ing and analysis are two important aspects of microarrays, since the aim of obtaining
meaningful biological conclusions depends on how well these stages are performed.
Moreover, many tasks are carried out sequentially, including gridding [3,4,5,6,7], seg-
mentation [8,9], quantification [2], normalization and data mining [1]. An error in any
of these stages is propagated to the rest of the process. When producing DNA microar-
rays, many parameters are specified, such as the number and size of spots, number
of sub-grids, and even their exact location. However, many physical-chemical factors
produce noise, misalignment, and even deformations in the sub-grid template that it is
virtually impossible to know the exact location of the spots after scanning is performed,
at least with the current technology. The first stage in the analysis is to find the loca-
tion of the sub-grids (or gridding), which is the focus of our paper. Roughly speaking,
gridding consists of determining the spot locations in a microarray image (typically, in
a sub-grid). The problem, however, is that microarray images are divided in sub-grids,
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done to facilitate the spot locations. While quite a few works have been done on locating
the spots in a sub-grid, they all assume the sub-grids are known, and this is the problem
considered in this paper, more formally stated as follows.

Consider an image (matrix) A = {aij}, i = 1, ...., n and j = 1, ...., m, where
aij ∈ Z

+, and A is a sub-grid of a cDNA microarray image1 [1] (usually, aij is in the
range [0..65,535] in a TIFF image). In what follows, we use A(x, y) to denote aij . The
aim is to obtain a matrix G (grid) where G = {gij}, i = 1, ...., n and j = 1, ...., m,
gij = 0 or gij = 1 (a binary image), with 0 meaning that gij belongs to the grid.
This image could be thought of as a “free-form” grid. However, in order to strictly use
the definition of a “grid”, our aim is to obtain vectors v and h, v = [v1, ..., vm]t, h =
[h1, ..., hn]t, where vi ∈ [1, m] and hj ∈ [1, n]. Each vertical and horizontal vectors are
used to separate the sub-grids. As seen later, rotation correction facilitates finding this
template.

Many approaches have been proposed for spot detection and image segmentation,
which basically assume that the sub-grids are already identified. That is, they typi-
cally work on a sub-grid, rather than on the entire microarray image. The Markov
random field (MRF) is a well known approach that applies different application spe-
cific constraints and heuristic criteria [3,10]. Another gridding method is mathematical
morphology, which represents the image as a function and applies erosion operators
and morphological filters to transform it into other images resulting in shrinkage and
area opening of the image, and which further helps in removing peaks and ridges from
the topological surface of the images [11]. Jain’s [8], Katzer’s [12], and Stienfath’s
[13] models are integrated systems for microarray gridding and quantitative analysis.
A method for detecting spot locations based on a Bayesian model has been recently
proposed, and uses a deformable template model to fit the grid of spots in such a tem-
plate using a posterior probability model which learns its parameters by means of a
simulated-annealing-based algorithm [3,5]. Another method for finding spot locations
uses a hill-climbing approach to maximize the energy, seen as the intensities of the
spots which are fit to different probabilistic models [7]. Fitting the image to a mixture
of Gaussians is another technique that has been applied to gridding microarray images
by considering radial and perspective distortions [6].

All these approaches, though efficient, assume the sub-grids have already been iden-
tified, and hence they proceed on a single sub-grid, which has to be specified by the
user. A method used for gridding that does not use this assumption has been proposed
in [14,15]. It performs a series of steps including rotation detection based on a simple
method that compares the running sum of the topmost and bottommost parts of the im-
age. It performs rotations locally and applies morphological opening to find sub-grids.
This method, which detects rotation angles wrt one of the axes, either x or y, has not
been tested on images having regions with high noise (e.g. bottommost 1/3 of the image
is quite noisy).

In this paper, we focus on automatically detecting the sub-grids given the entire
microarray image. The method proposed here uses the well-known Radon transform
and an information-theoretic measure to detect rotations (wrt the x and y axes), which

1 The aim is to apply this method to a microarray image that contains a template of rows and
columns of sub-grids.
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are corrected by an affine transformation. Once corrected, the imaged is passed through
a mathematical-morphology approach to detect valleys, which are then used to separate
the sub-grids. Section 2 discuss the details of the proposed method, while Section 3
presents the experiments on real-life images, followed by the conclusions to the paper.

2 Sub-grid Detection

The proposed sub-grid detection method aims to first correct any rotation of the image
by means of the Radon transform [4,16]. After this, the (x or y-axis) running sum of
pixels is passed through morphological operators to reduce noise, and then the detected
valleys denote the separation between sub-grids. Note, however, that in order to process
the microarray image in subsequent steps (i.e. gridding and segmentation) the image
does not have necessarily to be rotated. Although, the method that we proposed herein
performs the rotation correction, this can be avoided by generating the horizontal and
vertical lines, v and h, for the corrected image, applying the inverse affine transforma-
tion to v and h, obtaining the sub-grids in the original image, and hence not degrading
the quality of the image.

Rotations of the image are seen in two different directions, wrt the x and y axes,
in the aim at finding two independent angles of rotation for an affine transformation,
and for this the Radon transform is applied. Roughly speaking, the Radon transform,
which can be seen as a particular case of the Hough transform, is the integral of an
n-dimensional function over all types of functions of dimension smaller than n. In two
dimensions, like in the case of images, the Radon transform is the integral of the 2D
function over all types of real-valued functions, e.g. polynomials, exponentials, etc. In
particular, when the latter function is a line, the Radon transform can be seen as the pro-
jection of the two-variable function (the integral) over a line having a direction (slope)
and a displacement (wrt the origin of the coordinate system); this is the case consid-
ered in this work. The Radon transform has been found quite useful in the past few
decades in many applications, including medicine (for the computed axial tomography,
or CAT), geology, and other fields of science. In two-dimensional functions projected
onto lines, it works as follows. Given an image A(x, y), the Radon transform performs
the following transformation:

R(p, t) =
∫ ∞

−∞
A(x, t + px)dx , (1)

where p is the slope and t its intercept. The rotation angle of the image with respect to
the slope p is given by φ = arctanp. For the sake of the notation, R(φ, t) is used to
denote the Radon transform of image A. Each rotation angle φ gives a different one-
dimensional function, and the aim is to obtain the angle that gives the best alignment
with the rows and columns. This will occur when the rows and columns are parallel to
the x or y-axis. There are many ways to state this as an optimization problem, and differ-
ent objective functions have been used (cf. [3]). In this work, an entropy-based function
is used. Assuming the sub-grids are (or should be2) aligned wrt the y-axis (and x-axis),

2 The aim is to detect the correct alignment. While the assumption made here is to formalize the
model, such an alignment is indeed what is found in the proposed approach.
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the one-dimensional projected function will show well-accentuated peaks, each corre-
sponding to a column (row) of spots and deep valleys corresponding to the background
separating the spots and sub-grids. Assuming the experimental setup in the microarray
fabrication considers a reasonable separation between the sub-grids (otherwise it would
not be possible to detect such a separation), deeper and wider valleys will be expected
between sub-grids, and which are then used to detect the corresponding sub-grids.

To compute the entropy function, the R(φ, t) function is normalized and renamed
R′(φ, t), such that

∫
t R′(φ, t) = 1. The best alignment will thus occur at the angle

φmin that minimizes the entropy as follows:

H(φ) = −
∫ ∞

−∞
R′(φ, t) log R′(φ, t)dt . (2)

One of the problems, however, the entropy function has is that, depending on the
rotation angle φ, the sides of the one-dimensional function tend to diminish the “uni-
formity” of the function, and hence bias the entropy measure. This occurs when φ is
near π/4. Since reasonable small rotations are expected to occur, small angles are con-
sidered (no more than 10 degrees of rotation). Also, the resulting signal function is on
a discrete domain, i.e. φ takes discrete values, and hence the entropy is computed as
follows:

H(φ) = −
∞∑

t=−∞
R′(φ, t) log R′(φ, t)dt . (3)

Note that R(φ, t) is normalized into R′(φ, t), such that
∑

t R′(φ, t) = 1.
The image is checked for rotations in both directions, wrt the x and y axes, obtaining

two different angles of rotation φminx and φminy respectively. The positions of the
pixels in the new image, [uv] , are obtained as follows:

[uv] = [xy1]T , (4)

where T is the following 3 × 2 matrix:

T =

⎡
⎣ α β

β α
γ1 γ2

⎤
⎦ (5)

The first two parameters, α and β, are given by the best angles of rotation found by
the Radon transform, φminx and φminy , and computed as follows:

α = s cosφminx (6)

β = s sin φminy (7)

where s is a scaling factor (in this work, s is set to 1), and γ1 and γ2 are translation
factors, which are set to 0. The transformed image, A′, is reconstructed by interpolating
the intensities of pixels x and y and their neighbors; in this work, bicubic is used.
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(a) Original. (b) Transformed.
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(c) Entropy function for rotation angles φ between -5 and 5, wrt the y-axis.

Fig. 1. A sample DNA microarray image (AT-20385-ch1) drawn from the Stanford microarray
database, along with the transformed (by means of the affine transformation) image, and the
entropy function wrt the y-axis

A sample image from the Stanford microarray database is shown in Fig. 1(a), namely
image AT-20385-ch1. This image has been reduced in size, and the whole image can
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(a) Original sx(x) function. (b) Resulting sx(x).

Fig. 2. The original running sum function, sx(x), before and after applying the morphological
operators, for image AT-20385-ch1

be found in the database3. This image contains 48 sub-grids arranged in 12 rows and 4
columns. This image is rotated -0.8 degrees wrt the y-axis and 1.5 degrees wrt the x-
axis (the latter not easily visualized by eye). These rotations are accurately detected by
means of horizontal and vertical Radon transforms, which are performed independently,
and the resulting image after applying the affine transformation as per (4) is shown in
Fig. 1(b). Fig. 1(c) depicts the entropy function as per (3) for all angles φ between -5
and 5 degrees wrt the y-axis. The global minimum at φminy = −0.8 is clearly visible
in the plot.

The next step consists of finding the lines separating the sub-grids. For this, it is
assumed that the angles that give the optimal affine transformation are φminx and
φminy , and the “transformed” image is A′. To detect the vertical lines4, the running
sum of pixel intensities of A′ is computed for all values of y, obtaining the function
sx(x) =

∑
y A′(x, y). To detect the lines separating the sub-grids, the n deepest and

widest valleys are found, where n is the number of columns of sub-grids (parameter
given by the user). The function sx(x) is passed through morphological operators (dila-
tion, sx(x) ⊕ b, followed by erosion, sx(x) � b, with b = [0, 1, 1, 1, 1, 0]) to in order to
remove noisy peaks. After this, n potential centers for the sub-grids are found by divid-
ing the range of sx(x) into nearly-equal parts. Since sx(x) contains many peaks (each
representing a spot), and the aim is to detect sub-grids, the function is passed, again, by
morphological operators (dilation, sx(x) ⊕ b, followed by erosion, sx(x) � b), where
b depends on the spot width in pixels (scanning resolution), and computed as follows.
The number of pixels p for each spot is found by means of a “hill-climbing” procedure
that finds the lowest valleys (in this paper, six are found) around the potential centers
for each sub-grid. Averaging the distances between the valleys found gives a resolution
r (width of each spot), and the morphological operand b is set as follows: b = [01r0],

3 The full image is electronically available at smd.stanford.edu, in category “Hormone treat-
ment”, subcategory “Transcription factors”, experiment ID “20385”, channel “1”.

4 The details for detecting the horizontal lines are similar and omitted to avoid repetition.
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where 1r is a run of r ones. Once the morphological operators are applied, the lines
separating the sub-grids are obtained as the centers of the deepest and widest valleys
between the potential centers found previously.

Fig. 2 shows the running sum of pixel intensities along the x-axis, for image AT-
20385-ch1. The original sx(x) function is plotted in Fig. 2(a), which contains many
sharped peaks corresponding to each column of spots, and hence making it difficult
to detect the separation between grids (the widest and deepest valleys). The resulting
function after applying the morphological operators is depicted in Fig. 2(b), in which
the sharped peaks tend to “disappear”, while the deepest valleys are preserved. The
three deepest and widest valleys, which can be easily visualized by eye, correspond
to the three lines separating the four columns of sub-grids. Note that it is not difficult
to detect these three valleys despite the image does not clearly show the separation
between columns of sub-grids.

3 Experimental Results

For the experiments, two different kinds of cDNA microarray images have been used.
The images have been selected from different sources, and have different scanning res-
olutions, in order to study the flexibility of the proposed method to detect sub-grids
under different spot sizes.

The first set of images has been drawn from the Stanford Microarray Database
(SMD), and corresponds to a study of the global transcriptional factors for hormone
treatment of Arabidopsis thaliana5 samples. Ten images were selected for testing the
proposed method, and they correspond to channels 1 and 2 for experiments IDs 20385,
20387, 20391, 20392 and 20395. The list of the images used for the testing are listed in
Table 1. The images have been named using AT (which stands for Arabidopsis thaliana),
followed by the experiment ID, and the channel number (1 or 2). The images have a res-
olution of 1910 × 5550 pixels and are in TIFF format. The spot resolution is 24 × 24
pixels per spot, and the separation between sub-grid columns is about 40 pixels, which
is very low. Each image contains 48 sub-grids, arranged in 12 rows and 4 columns.
Also, listed in the table are for each image, the angles of rotation wrt to the x and y
axes, φminx and φminy respectively, found by maximizing (3). The last column lists
the accuracy in terms of percentage, which represents the number of sub-grids correctly
detected. All the images are rotated with respect to both x and y axes. Also, the angles
of rotation are different for the two axes, x and y, for all the images. These rotations
are detected and corrected by the proposed method. Note that even when the angles of
rotation are small, e.g. 0.5 and 0.2 for AT-20395 ch1 and ch2, it is critical to detect
these angles and correct them, since the resolution of the images is very high and a
small angle variation will produce a displacement of a vertical line by a large number
of pixels. For example, a rotation angle of 0.8 degrees wrt to the y-axis will produce
a displacement of 25 pixels (for images AT-20385 ch1 and ch2). Since the separation
between sub-grids is about 40 pixels, it is quite difficult, though possible, to detect the
vertical lines separating the sub-grids, while after detecting and correcting the rotations,

5 The images can be downloaded from smd.stanford.edu, by searching “Hormone treatment” as
category and “Transcription factors” as subcategory.
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Table 1. Test images drawn from the SMD, angles of rotation and percentage of sub-grids
detected

Image φminx φminy Accuracy
AT-20385-ch1 1.5 -0.8 100%
AT-20385-ch2 1.5 -0.8 100%
AT-20387-ch1 0.8 -0.1 100%
AT-20387-ch2 0.8 -0.1 100%
AT-20391-ch1 0.9 -0.2 100%
AT-20391-ch2 0.9 -0.2 100%
AT-20392-ch1 1.0 -0.2 100%
AT-20392-ch2 1.0 -0.2 100%
AT-20395-ch1 0.5 0.2 100%
AT-20395-ch2 0.5 0.2 100%

it is rather easy to separate the sub-grids – this is observed by the 100% accuracy the
method yields on all the images of the SMD.

To observe visually how the method performs, Figs. 3 and 4 show two images, AT-
20385-ch1 and AT-20387-ch1, in their original form, and the resulting images obtained
after applying the proposed method (Figs. 3(b) and 4(b)). For AT-20385-ch1, the rota-
tion wrt to the y-axis is clearly visible in the picture and it is seen how it is corrected.
It is clear also how the sub-grids are accurately detected, specially the vertical lines
separating the grids, despite the image contains many noisy artifacts resulting from the
microarray experimental stages – some sub-grids on the bottom right part of the image
are even quite noisy. For AT-20387-ch1 the angle of rotation wrt to the y-axis is very
small, φminy = 0.1; however, it is detected and corrected by the proposed method. It
is clear from Figs. 3 and 4 how the sub-grids are detected and well separated by the
vertical and horizontal lines.

The second test suite consists of a set of images produced in a microarray study of
a few genes in an experiment where human cultured cell line was used to look at the
toxicogenomic effects of two pesticides that were found in the rural drinking water [17],
namely the human toxicogenomic dataset (HTD). Ten images were selected for testing
the proposed method, which correspond to five different experiments in two channels,
Cy3 and Cy5. The images are listed in Table 2, and are named by using HT (which
stands for human toxicogenomic), followed by the channel number (Cy3 or Cy5) and
the experiment ID. The images have a resolution of 7013×3514 pixels, and are in TIFF
format. The spot resolution is 40 × 40 pixels per spot, and the separation between sub-
grid columns and rows is about 400 pixels. Each image contains 32 sub-grids, arranged
in 8 rows and 4 columns. The second, third and fourth columns have the same meaning
as in Table 1. As in the other set of images, all the sugrids are detected with 100% ac-
curacy, denoting the efficiency of the proposed method. While the angles of rotation for
the images of the HTD are quite small, they are detected and corrected by the proposed
method. However, a small angle for these images produce a large displacement in terms
of pixels, since their resolution is higher than that of the images of the SMD. For exam-
ple, for image HT-Cy3-12667177, a rotation of -0.2 degrees produces a displacement
of 8 pixels, which in turn, affects the process of detecting the sub-grid separation.
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(a) Original. (b) Sub-grids.

Fig. 3. Original and sub-grids detected by the proposed method, for images AT-20385-ch1 drawn
from the SMD

An image, HT-Cy5-12663787, drawn from the HTD is shown in Fig. 5. The original
and sub-grids detected are shown in (a) and (b) respectively. Even though the sub-
grids are well separated by a large number of pixels, the image contains a lot of noise
in the separating area, and thus, making it difficult to detect the sub-grid separation
(accurately done by the proposed method). The noise present in the separating area,
however, does produce a displacement of the separating lines, but each box perfectly
encloses the corresponding sub-grid. All the 20 images tested can be downloaded from
the corresponding links given above.

To conclude the paper, the advantages of using the proposed method are summarized
as follows. First, the proposed method allows to automatically detect angles of rotation
(independently for the x and y axes), and performs a correction based on an affine trans-
formation. Second, rotations are detected by mathematically sound principles involving
the Radon transform and information-theoretic measures. Third, once the affine trans-
formation is performed, the method allows to detect the sub-grids accurately, as shown
in two sets of images from different sources and having different parameters (resolution,
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(a) Original. (b) Sub-grids.

Fig. 4. Original and sub-grids detected by the proposed method, for images AT-20387-ch1 drawn
from the SMD

Table 2. Test images drawn from the HTD, angles of rotation and percentage of sub-grids
detected

Image φminx φminy Accuracy
HT-Cy3-12663787 0.3 -0.1 100%
HT-Cy5-12663787 0.3 -0.1 100%
HT-Cy3-12667177 0.3 -0.2 100%
HT-Cy5-12667177 0.3 -0.2 100%
HT-Cy3-12667189 0.3 -0.1 100%
HT-Cy5-12667189 0.3 -0.1 100%
HT-Cy3-12667190 0.4 -0.2 100%
HT-Cy5-12667190 0.4 -0.2 100%
HT-Cy3-12684418 0.0 0.0 100%
HT-Cy5-12684418 0.0 0.0 100%
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(a) Original. (b) Sub-grids.

Fig. 5. Original and sub-grids detected for image HT-Cy5-12663787 drawn from the HTD

number of sub-grids, spot width, etc.). Fourth, the method provides the right orienta-
tion of the sub-grids detected so that they can be processed in the subsequent steps
required to continue the microarray data analysis, namely detecting the spot centers (or
gridding), and separating the background from foreground (segmentation).

4 Conclusions

A method for separating sub-grids in cDNA microarray images has been proposed. The
method performs two main steps involving the Radon transform for detecting rotations
wrt the x and y axes, and the use of morphological operators to detect the corresponding
valleys that separate the sub-grids.

The proposed method has been tested on real-life, high-resolution microarray images
drawn from two sources, the SMD and the HTD. The results show that (1) the rotations
are effectively detected and corrected by affine transformations, and (2) the sub-grids
are accurately detected in all cases, even in abnormal conditions such as extremely noisy
areas present in the images.

Future work involves the use of nonlinear functions for the Radon transform, in order
to detect curvilinear rotations. This is far from trivial as it involves a number of possible
nonlinear functions, e.g. polynomials or exponentials. Another topic to investigate is
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to fit each sub-grid into a perfect box eliminating any surrounding background, and
hence providing advantages for the subsequent steps, a problem that is currently being
undertaking.
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